comparison bmsb.R @ 33:390ed5192839 draft

Uploaded
author greg
date Fri, 16 Dec 2016 08:50:54 -0500
parents
children 7c40c2b303f1
comparison
equal deleted inserted replaced
32:7418fc8f0780 33:390ed5192839
1 #!/usr/bin/env Rscript
2
3 suppressPackageStartupMessages(library("optparse"))
4
5 option_list <- list(
6 make_option(c("-a", "--adult_mort"), action="store", dest="adult_mort", type="integer", help="Adjustment rate for adult mortality"),
7 make_option(c("-b", "--adult_nymph_accum"), action="store", dest="adult_nymph_accum", type="integer", help="Adjustment of DD accumulation (old nymph->adult)"),
8 make_option(c("-c", "--egg_mort"), action="store", dest="egg_mort", type="integer", help="Adjustment rate for egg mortality"),
9 make_option(c("-d", "--latitude"), action="store", dest="latitude", type="double", help="Latitude of selected location"),
10 make_option(c("-e", "--location"), action="store", dest="location", help="Selected location"),
11 make_option(c("-f", "--min_clutch_size"), action="store", dest="min_clutch_size", type="integer", help="Adjustment of minimum clutch size"),
12 make_option(c("-g", "--max_clutch_size"), action="store", dest="max_clutch_size", type="integer", help="Adjustment of maximum clutch size"),
13 make_option(c("-j", "--nymph_mort"), action="store", dest="nymph_mort", type="integer", help="Adjustment rate for nymph mortality"),
14 make_option(c("-k", "--old_nymph_accum"), action="store", dest="old_nymph_accum", type="integer", help="Adjustment of DD accumulation (young nymph->old nymph)"),
15 make_option(c("-o", "--output"), action="store", dest="output", help="Output dataset"),
16 make_option(c("-p", "--oviposition"), action="store", dest="oviposition", type="integer", help="Adjustment for oviposition rate"),
17 make_option(c("-q", "--photoperiod"), action="store", dest="photoperiod", type="double", help="Critical photoperiod for diapause induction/termination"),
18 make_option(c("-s", "--replications"), action="store", dest="replications", type="integer", help="Number of replications"),
19 make_option(c("-t", "--se_plot"), action="store", dest="se_plot", help="Plot SE"),
20 make_option(c("-u", "--year"), action="store", dest="year", type="integer", help="Starting year"),
21 make_option(c("-v", "--temperature_dataset"), action="store", dest="temperature_dataset", help="Temperature data for selected location"),
22 make_option(c("-y", "--young_nymph_accum"), action="store", dest="young_nymph_accum", type="integer", help="Adjustment of DD accumulation (egg->young nymph)")
23 )
24
25 parser <- OptionParser(usage="%prog [options] file", option_list=option_list)
26 args <- parse_args(parser, positional_arguments=TRUE)
27 opt <- args$options
28
29 data.input=function(loc, start.yr, temperature.dataset)
30 {
31 expdata <- matrix(rep(0, 365 * 3), nrow=365)
32 # replace 2004 with start. yr
33 yr <- start.yr
34 namedat <- paste(loc, yr, ".Rdat", sep="")
35 temp.data <- read.csv(file=temperature.dataset, header=T)
36
37 expdata[,1] <- c(1:365)
38 save(expdata, file=namedat)
39 namedat
40 }
41
42 daylength=function(L)
43 {
44 # from Forsythe 1995
45 p=0.8333
46 dl <- NULL
47 for (i in 1:365)
48 {
49 theta <- 0.2163108 + 2 * atan(0.9671396 * tan(0.00860 * (i - 186)))
50 phi <- asin(0.39795 * cos(theta))
51 dl[i] <- 24 - 24 / pi * acos((sin(p * pi / 180) + sin(L * pi / 180) * sin(phi)) / (cos(L * pi / 180) * cos(phi)))
52 }
53 dl # return a vector of daylength in 365 days
54 }
55
56 hourtemp=function(L, date, temperature_file_path)
57 {
58 load(temperature_file_path)
59 threshold <- 14.17 # base development threshold for BMSB
60 dnp <- expdata[date, 2] # daily minimum
61 dxp <- expdata[date, 3] # daily maximum
62 dmean <- 0.5 * (dnp + dxp)
63 dd <- 0 # initialize degree day accumulation
64
65 if (dxp<threshold)
66 {
67 dd <- 0
68 }
69 else
70 {
71 dlprofile <- daylength(L) # extract daylength data for entire year
72 T <- NULL # initialize hourly temperature
73 dh <- NULL #initialize degree hour vector
74 # date <- 200
75 y <- dlprofile[date] # calculate daylength in given date
76 z <- 24 - y # night length
77 a <- 1.86 # lag coefficient
78 b <- 2.20 # night coefficient
79 #tempdata <- read.csv("tempdata.csv") #import raw data set
80 # Should be outside function otherwise its redundant
81 risetime <- 12 - y / 2 # sunrise time
82 settime <- 12 + y / 2 # sunset time
83 ts <- (dxp - dnp) * sin(pi * (settime - 5) / (y + 2 * a)) + dnp
84 for (i in 1:24)
85 {
86 if (i > risetime && i<settime)
87 {
88 m <- i - 5 # number of hours after Tmin until sunset
89 T[i]=(dxp - dnp) * sin(pi * m / (y + 2 * a)) + dnp
90 if (T[i]<8.4)
91 {
92 dh[i] <- 0
93 }
94 else
95 {
96 dh[i] <- T[i] - 8.4
97 }
98 }
99 else if (i > settime)
100 {
101 n <- i - settime
102 T[i]=dnp + (ts - dnp) * exp( - b * n / z)
103 if (T[i]<8.4)
104 {
105 dh[i] <- 0
106 }
107 else
108 {
109 dh[i] <- T[i] - 8.4
110 }
111 }
112 else
113 {
114 n <- i + 24 - settime
115 T[i]=dnp + (ts - dnp) * exp( - b * n / z)
116 if (T[i]<8.4)
117 {
118 dh[i] <- 0
119 }
120 else
121 {
122 dh[i] <- T[i] - 8.4
123 }
124 }
125 }
126 dd <- sum(dh) / 24
127 }
128 return=c(dmean, dd)
129 return
130 }
131
132 dev.egg = function(temperature)
133 {
134 dev.rate= -0.9843 * temperature + 33.438
135 return = dev.rate
136 return
137 }
138
139 dev.young = function(temperature)
140 {
141 n12 <- -0.3728 * temperature + 14.68
142 n23 <- -0.6119 * temperature + 25.249
143 dev.rate = mean(n12 + n23)
144 return = dev.rate
145 return
146 }
147
148 dev.old = function(temperature)
149 {
150 n34 <- -0.6119 * temperature + 17.602
151 n45 <- -0.4408 * temperature + 19.036
152 dev.rate = mean(n34 + n45)
153 return = dev.rate
154 return
155 }
156
157 dev.emerg = function(temperature)
158 {
159 emerg.rate <- -0.5332 * temperature + 24.147
160 return=emerg.rate
161 return
162 }
163
164 mortality.egg=function(temperature)
165 {
166 if (temperature<12.7)
167 {
168 mort.prob = 0.8
169 }
170 else
171 {
172 mort.prob = 0.8 - temperature / 40.0
173 if (mort.prob<0)
174 {
175 mort.prob=0.01
176 }
177 }
178 return=mort.prob
179 return
180 }
181
182 mortality.nymph=function(temperature)
183 {
184 if (temperature<12.7)
185 {
186 mort.prob=0.03
187 }
188 else
189 {
190 mort.prob=temperature * 0.0008 + 0.03
191 }
192 return=mort.prob
193 return
194 }
195
196 mortality.adult=function(temperature)
197 {
198 if (temperature<12.7)
199 {
200 mort.prob=0.002
201 }
202 else
203 {
204 mort.prob=temperature * 0.0005 + 0.02
205 }
206 return=mort.prob
207 return
208 }
209
210 # Read in the input temperature datafile
211 temperature_file_path <- data.input(opt$location, opt$year, opt$temperature_dataset)
212
213 # Initialize matrix for results from all replications
214 S0.rep <- S1.rep <- S2.rep <- S3.rep <- S4.rep <- S5.rep <- matrix(rep(0, 365 * opt$replications), ncol = opt$replications)
215 newborn.rep <- death.rep <- adult.rep <- pop.rep <- g0.rep <- g1.rep <- g2.rep <- g0a.rep <- g1a.rep <- g2a.rep <- matrix(rep(0, 365 * opt$replications), ncol=opt$replications)
216
217 # loop through replications
218 for (N.rep in 1:opt$replications)
219 {
220 # during each replication
221 # start with 1000 individuals -- user definable as well?
222 n <- 1000
223 # Generation, Stage, DD, T, Diapause
224 vec.ini <- c(0, 3, 0, 0, 0)
225 # overwintering, previttelogenic, DD=0, T=0, no-diapause
226 vec.mat <- rep(vec.ini, n)
227 # complete matrix for the population
228 vec.mat <- t(matrix(vec.mat, nrow=5))
229 # complete photoperiod profile in a year, requires daylength function
230 ph.p <- daylength(opt$latitude)
231
232 # time series of population size
233 tot.pop <- NULL
234 # gen.0 pop size
235 gen0.pop <- rep(0, 365)
236 gen1.pop <- rep(0, 365)
237 gen2.pop <- rep(0, 365)
238 S0 <- S1 <- S2 <- S3 <- S4 <- S5 <- rep(0, 365)
239 g0.adult <- g1.adult <- g2.adult <- rep(0, 365)
240 N.newborn <- N.death <- N.adult <- rep(0, 365)
241 dd.day <- rep(0, 365)
242
243 # start tick
244 ptm <- proc.time()
245
246 # all the days
247 for (day in 1:365)
248 {
249 # photoperiod in the day
250 photoperiod <- ph.p[day]
251 temp.profile <- hourtemp(opt$latitude, day, temperature_file_path)
252 mean.temp <- temp.profile[1]
253 dd.temp <- temp.profile[2]
254 dd.day[day] <- dd.temp
255 # trash bin for death
256 death.vec <- NULL
257 # new born
258 birth.vec <- NULL
259
260 # all individuals
261 for (i in 1:n)
262 {
263 # find individual record
264 vec.ind <- vec.mat[i,]
265 # first of all, still alive?
266 # adjustment for late season mortality rate
267 if (opt$latitude < 40.0)
268 {
269 post.mort <- 1
270 day.kill <- 300
271 }
272 else
273 {
274 post.mort <- 2
275 day.kill <- 250
276 }
277 if (vec.ind[2] == 0)
278 {
279 # egg
280 death.prob = opt$egg_mort * mortality.egg(mean.temp)
281 }
282 else if (vec.ind[2] == 1 | vec.ind[2] == 2)
283 {
284 death.prob = opt$nymph_mort * mortality.nymph(mean.temp)
285 }
286 else if (vec.ind[2] == 3 | vec.ind[2] == 4 | vec.ind[2] == 5)
287 {
288 # for adult
289 if (day < day.kill)
290 {
291 death.prob = opt$adult_mort * mortality.adult(mean.temp)
292 }
293 else
294 {
295 # increase adult mortality after fall equinox
296 death.prob = opt$adult_mort * post.mort * mortality.adult(mean.temp)
297 }
298 }
299 # (or dependent on temperature and life stage?)
300 u.d <- runif(1)
301 if (u.d < death.prob)
302 {
303 death.vec <- c(death.vec, i)
304 }
305 else
306 {
307 # aggregrate index of dead bug
308 # event 1 end of diapause
309 if (vec.ind[1] == 0 && vec.ind[2] == 3)
310 {
311 # overwintering adult (previttelogenic)
312 if (photoperiod > opt$photoperiod && vec.ind[3] > 68 && day < 180)
313 {
314 # add 68C to become fully reproductively matured
315 # transfer to vittelogenic
316 vec.ind <- c(0, 4, 0, 0, 0)
317 vec.mat[i,] <- vec.ind
318 }
319 else
320 {
321 # add to DD
322 vec.ind[3] <- vec.ind[3] + dd.temp
323 # add 1 day in current stage
324 vec.ind[4] <- vec.ind[4] + 1
325 vec.mat[i,] <- vec.ind
326 }
327 }
328 if (vec.ind[1] != 0 && vec.ind[2] == 3)
329 {
330 # NOT overwintering adult (previttelogenic)
331 current.gen <- vec.ind[1]
332 if (vec.ind[3] > 68)
333 {
334 # add 68C to become fully reproductively matured
335 # transfer to vittelogenic
336 vec.ind <- c(current.gen, 4, 0, 0, 0)
337 vec.mat[i,] <- vec.ind
338 }
339 else
340 {
341 # add to DD
342 vec.ind[3] <- vec.ind[3] + dd.temp
343 # add 1 day in current stage
344 vec.ind[4] <- vec.ind[4] + 1
345 vec.mat[i,] <- vec.ind
346 }
347 }
348
349 # event 2 oviposition -- where population dynamics comes from
350 if (vec.ind[2] == 4 && vec.ind[1] == 0 && mean.temp > 10)
351 {
352 # vittelogenic stage, overwintering generation
353 if (vec.ind[4] == 0)
354 {
355 # just turned in vittelogenic stage
356 n.birth=round(runif(1, 2 + min.ovi.adj, 8 + max.ovi.adj))
357 }
358 else
359 {
360 # daily probability of birth
361 p.birth = opt$oviposition * 0.01
362 u1 <- runif(1)
363 if (u1 < p.birth)
364 {
365 n.birth=round(runif(1, 2, 8))
366 }
367 }
368 # add to DD
369 vec.ind[3] <- vec.ind[3] + dd.temp
370 # add 1 day in current stage
371 vec.ind[4] <- vec.ind[4] + 1
372 vec.mat[i,] <- vec.ind
373 if (n.birth > 0)
374 {
375 # add new birth -- might be in different generations
376 # generation + 1
377 new.gen <- vec.ind[1] + 1
378 # egg profile
379 new.ind <- c(new.gen, 0, 0, 0, 0)
380 new.vec <- rep(new.ind, n.birth)
381 # update batch of egg profile
382 new.vec <- t(matrix(new.vec, nrow=5))
383 # group with total eggs laid in that day
384 birth.vec <- rbind(birth.vec, new.vec)
385 }
386 }
387
388 # event 2 oviposition -- for gen 1.
389 if (vec.ind[2] == 4 && vec.ind[1] == 1 && mean.temp > 12.5 && day < 222)
390 {
391 # vittelogenic stage, 1st generation
392 if (vec.ind[4] == 0)
393 {
394 # just turned in vittelogenic stage
395 n.birth=round(runif(1, 2 + min.ovi.adj, 8 + max.ovi.adj))
396 }
397 else
398 {
399 # daily probability of birth
400 p.birth = opt$oviposition * 0.01
401 u1 <- runif(1)
402 if (u1 < p.birth)
403 {
404 n.birth = round(runif(1, 2, 8))
405 }
406 }
407 # add to DD
408 vec.ind[3] <- vec.ind[3] + dd.temp
409 # add 1 day in current stage
410 vec.ind[4] <- vec.ind[4] + 1
411 vec.mat[i,] <- vec.ind
412 if (n.birth > 0)
413 {
414 # add new birth -- might be in different generations
415 # generation + 1
416 new.gen <- vec.ind[1] + 1
417 # egg profile
418 new.ind <- c(new.gen, 0, 0, 0, 0)
419 new.vec <- rep(new.ind, n.birth)
420 # update batch of egg profile
421 new.vec <- t(matrix(new.vec, nrow=5))
422 # group with total eggs laid in that day
423 birth.vec <- rbind(birth.vec, new.vec)
424 }
425 }
426
427 # event 3 development (with diapause determination)
428 # event 3.1 egg development to young nymph (vec.ind[2]=0 -> egg)
429 if (vec.ind[2] == 0)
430 {
431 # egg stage
432 # add to DD
433 vec.ind[3] <- vec.ind[3] + dd.temp
434 if (vec.ind[3] >= (68 + dd.adj1))
435 {
436 # from egg to young nymph, DD requirement met
437 current.gen <- vec.ind[1]
438 # transfer to young nym stage
439 vec.ind <- c(current.gen, 1, 0, 0, 0)
440 }
441 else
442 {
443 # add 1 day in current stage
444 vec.ind[4] <- vec.ind[4] + 1
445 }
446 vec.mat[i,] <- vec.ind
447 }
448
449 # event 3.2 young nymph to old nymph (vec.ind[2]=1 -> young nymph: determines diapause)
450 if (vec.ind[2] == 1)
451 {
452 # young nymph stage
453 # add to DD
454 vec.ind[3] <- vec.ind[3] + dd.temp
455 if (vec.ind[3] >= (250 +dd.adj2))
456 {
457 # from young to old nymph, DD requirement met
458 current.gen <- vec.ind[1]
459 # transfer to old nym stage
460 vec.ind <- c(current.gen, 2, 0, 0, 0)
461 if (photoperiod < opt$photoperiod && day > 180)
462 {
463 vec.ind[5] <- 1
464 } # prepare for diapausing
465 }
466 else
467 {
468 # add 1 day in current stage
469 vec.ind[4] <- vec.ind[4] + 1
470 }
471 vec.mat[i,] <- vec.ind
472 }
473
474 # event 3.3 old nymph to adult: previttelogenic or diapausing?
475 if (vec.ind[2] == 2)
476 {
477 # old nymph stage
478 # add to DD
479 vec.ind[3] <- vec.ind[3] + dd.temp
480 if (vec.ind[3] >= (200 + dd.adj3))
481 {
482 # from old to adult, DD requirement met
483 current.gen <- vec.ind[1]
484 if (vec.ind[5] == 0)
485 {
486 # non-diapausing adult -- previttelogenic
487 vec.ind <- c(current.gen, 3, 0, 0, 0)
488 }
489 else
490 {
491 # diapausing
492 vec.ind <- c(current.gen, 5, 0, 0, 1)
493 }
494 }
495 else
496 {
497 # add 1 day in current stage
498 vec.ind[4] <- vec.ind[4] + 1
499 }
500 vec.mat[i,] <- vec.ind
501 }
502
503 # event 4 growing of diapausing adult (unimportant, but still necessary)##
504 if (vec.ind[2] == 5)
505 {
506 vec.ind[3] <- vec.ind[3] + dd.temp
507 vec.ind[4] <- vec.ind[4] + 1
508 vec.mat[i,] <- vec.ind
509 }
510 } # else if it is still alive
511 } # end of the individual bug loop
512
513 # find how many died
514 n.death <- length(death.vec)
515 if (n.death > 0)
516 {
517 vec.mat <- vec.mat[-death.vec, ]
518 }
519 # remove record of dead
520 # find how many new born
521 n.newborn <- length(birth.vec[,1])
522 vec.mat <- rbind(vec.mat, birth.vec)
523 # update population size for the next day
524 n <- n - n.death + n.newborn
525
526 # aggregate results by day
527 tot.pop <- c(tot.pop, n)
528 # egg
529 s0 <- sum(vec.mat[,2] == 0)
530 # young nymph
531 s1 <- sum(vec.mat[,2] == 1)
532 # old nymph
533 s2 <- sum(vec.mat[,2] == 2)
534 # previtellogenic
535 s3 <- sum(vec.mat[,2] == 3)
536 # vitellogenic
537 s4 <- sum(vec.mat[,2] == 4)
538 # diapausing
539 s5 <- sum(vec.mat[,2] == 5)
540 # overwintering adult
541 gen0 <- sum(vec.mat[,1] == 0)
542 # first generation
543 gen1 <- sum(vec.mat[,1] == 1)
544 # second generation
545 gen2 <- sum(vec.mat[,1] == 2)
546 # sum of all adults
547 n.adult <- sum(vec.mat[,2] == 3) + sum(vec.mat[,2] == 4) + sum(vec.mat[,2] == 5)
548 # gen.0 pop size
549 gen0.pop[day] <- gen0
550 gen1.pop[day] <- gen1
551 gen2.pop[day] <- gen2
552 S0[day] <- s0
553 S1[day] <- s1
554 S2[day] <- s2
555 S3[day] <- s3
556 S4[day] <- s4
557 S5[day] <- s5
558 g0.adult[day] <- sum(vec.mat[,1] == 0)
559 g1.adult[day] <- sum((vec.mat[,1] == 1 & vec.mat[,2] == 3) | (vec.mat[,1] == 1 & vec.mat[,2] == 4) | (vec.mat[,1] == 1 & vec.mat[,2] == 5))
560 g2.adult[day] <- sum((vec.mat[,1]== 2 & vec.mat[,2] == 3) | (vec.mat[,1] == 2 & vec.mat[,2] == 4) | (vec.mat[,1] == 2 & vec.mat[,2] == 5))
561
562 N.newborn[day] <- n.newborn
563 N.death[day] <- n.death
564 N.adult[day] <- n.adult
565 #print(c(N.rep, day, n, n.adult))
566 } # end of 365 days
567
568 dd.cum <- cumsum(dd.day)
569 # collect all the outputs
570 S0.rep[,N.rep] <- S0
571 S1.rep[,N.rep] <- S1
572 S2.rep[,N.rep] <- S2
573 S3.rep[,N.rep] <- S3
574 S4.rep[,N.rep] <- S4
575 S5.rep[,N.rep] <- S5
576 newborn.rep[,N.rep] <- N.newborn
577 death.rep[,N.rep] <- N.death
578 adult.rep[,N.rep] <- N.adult
579 pop.rep[,N.rep] <- tot.pop
580 g0.rep[,N.rep] <- gen0.pop
581 g1.rep[,N.rep] <- gen1.pop
582 g2.rep[,N.rep] <- gen2.pop
583 g0a.rep[,N.rep] <- g0.adult
584 g1a.rep[,N.rep] <- g1.adult
585 g2a.rep[,N.rep] <- g2.adult
586 }
587
588 # save(dd.day, dd.cum, S0.rep, S1.rep, S2.rep, S3.rep, S4.rep, S5.rep, newborn.rep, death.rep, adult.rep, pop.rep, g0.rep, g1.rep, g2.rep, g0a.rep, g1a.rep, g2a.rep, file=opt$output)
589 # maybe do not need to export this bit, but for now just leave it as-is
590 # do we need to export this Rdat file?
591
592 # Data analysis and visualization
593 # default: plot 1 year of result
594 # but can be expanded to accommodate multiple years
595 n.yr <- 1
596 day.all <- c(1:365 * n.yr)
597
598 # mean value for adults
599 sa <- apply((S3.rep + S4.rep + S5.rep), 1, mean)
600 # mean value for nymphs
601 sn <- apply((S1.rep + S2.rep), 1,mean)
602 # mean value for eggs
603 se <- apply(S0.rep, 1, mean)
604 # mean value for P
605 g0 <- apply(g0.rep, 1, mean)
606 # mean value for F1
607 g1 <- apply(g1.rep, 1, mean)
608 # mean value for F2
609 g2 <- apply(g2.rep, 1, mean)
610 # mean value for P adult
611 g0a <- apply(g0a.rep, 1, mean)
612 # mean value for F1 adult
613 g1a <- apply(g1a.rep, 1, mean)
614 # mean value for F2 adult
615 g2a <- apply(g2a.rep, 1, mean)
616
617 # SE for adults
618 sa.se <- apply((S3.rep + S4.rep + S5.rep), 1, sd) / sqrt(opt$replications)
619 # SE for nymphs
620 sn.se <- apply((S1.rep + S2.rep) / sqrt(opt$replications), 1, sd)
621 # SE for eggs
622 se.se <- apply(S0.rep ,1 ,sd) / sqrt(opt$replications)
623 # SE value for P
624 g0.se <- apply(g0.rep, 1, sd) / sqrt(opt$replications)
625 # SE for F1
626 g1.se <- apply(g1.rep, 1, sd) / sqrt(opt$replications)
627 # SE for F2
628 g2.se <- apply(g2.rep, 1, sd) / sqrt(opt$replications)
629 # SE for P adult
630 g0a.se <- apply(g0a.rep, 1, sd) / sqrt(opt$replications)
631 # SE for F1 adult
632 g1a.se <- apply(g1a.rep, 1, sd) / sqrt(opt$replications)
633 # SE for F2 adult
634 g2a.se <- apply(g2a.rep, 1, sd) / sqrt(opt$replications)
635
636 dev.new(width = 9, height = 9)
637
638 # Start PDF device driver to save charts to output.
639 pdf(file=opt$output, height=20, width=20, bg="white")
640
641 par(mar = c(5, 6, 4, 4), mfrow=c(3, 1))
642
643 # Subfigure 2: population size by life stage
644 plot(day.all, sa, main = "Total Population Size by Life Stage", type = "l", ylim = c(0, max(se + se.se, sn + sn.se, sa + sa.se)), axes = F, lwd = 2, xlab = "", ylab = "Number", cex = 2, cex.lab = 2, cex.axis = 2, cex.main = 2)
645 # Young and old nymphs
646 lines(day.all, sn, lwd = 2, lty = 1, col = 2)
647 # Eggs
648 lines(day.all, se, lwd = 2, lty = 1, col = 4)
649 axis(1, at = c(1:12) * 30 - 15, cex.axis = 2, labels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))
650 axis(2, cex.axis = 2)
651 leg.text <- c("Egg", "Nymph", "Adult")
652 legend("topleft", leg.text, lty = c(1, 1, 1), col = c(4, 2, 1), cex = 2)
653 if (opt$se_plot == 1)
654 {
655 # add SE lines to plot
656 # SE for adults
657 lines (day.all, sa + sa.se, lty = 2)
658 lines (day.all, sa - sa.se, lty = 2)
659 # SE for nymphs
660 lines (day.all, sn + sn.se, col = 2, lty = 2)
661 lines (day.all, sn - sn.se, col = 2, lty = 2)
662 # SE for eggs
663 lines (day.all, se + se.se, col = 4, lty = 2)
664 lines (day.all, se - se.se, col = 4, lty = 2)
665 }
666
667 # Subfigure 3: population size by generation
668 plot(day.all, g0, main = "Total Population Size by Generation", type = "l", ylim = c(0, max(g2)), axes = F, lwd = 2, xlab = "", ylab = "Number", cex = 2, cex.lab = 2, cex.axis = 2, cex.main = 2)
669 lines(day.all, g1, lwd = 2, lty = 1, col = 2)
670 lines(day.all, g2, lwd = 2, lty = 1, col = 4)
671 axis(1, at = c(1:12) * 30 - 15, cex.axis = 2, labels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))
672 axis(2, cex.axis = 2)
673 leg.text <- c("P", "F1", "F2")
674 legend("topleft", leg.text, lty = c(1, 1, 1), col =c(1, 2, 4), cex = 2)
675 if (opt$se_plot == 1)
676 {
677 # add SE lines to plot
678 # SE for adults
679 lines (day.all, g0 + g0.se, lty = 2)
680 lines (day.all, g0 - g0.se, lty = 2)
681 # SE for nymphs
682 lines (day.all, g1 + g1.se, col = 2, lty = 2)
683 lines (day.all, g1 - g1.se, col = 2, lty = 2)
684 # SE for eggs
685 lines (day.all, g2 + g2.se, col = 4, lty = 2)
686 lines (day.all, g2 - g2.se, col = 4, lty = 2)
687 }
688
689 # Subfigure 4: adult population size by generation
690 plot(day.all, g0a, ylim = c(0, max(g2a) + 100), main = "Adult Population Size by Generation", type = "l", axes = F, lwd = 2, xlab = "Year", ylab = "Number", cex = 2, cex.lab = 2, cex.axis = 2, cex.main = 2)
691 lines(day.all, g1a, lwd = 2, lty = 1, col = 2)
692 lines(day.all, g2a, lwd = 2, lty = 1, col = 4)
693 axis(1, at = c(1:12) * 30 - 15, cex.axis = 2, labels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))
694 axis(2, cex.axis = 2)
695 leg.text <- c("P", "F1", "F2")
696 legend("topleft", leg.text, lty = c(1, 1, 1), col = c(1, 2, 4), cex = 2)
697 if (opt$se_plot == 1)
698 {
699 # add SE lines to plot
700 # SE for adults
701 lines (day.all, g0a + g0a.se, lty = 2)
702 lines (day.all, g0a - g0a.se, lty = 2)
703 # SE for nymphs
704 lines (day.all, g1a + g1a.se, col = 2, lty = 2)
705 lines (day.all, g1a - g1a.se, col = 2, lty = 2)
706 # SE for eggs
707 lines (day.all, g2a + g2a.se, col = 4, lty = 2)
708 lines (day.all, g2a - g2a.se, col = 4, lty = 2)
709 }
710
711 # Turn off device driver to flush output.
712 dev.off()