Mercurial > repos > greg > bmsb
comparison bmsb.R @ 33:390ed5192839 draft
Uploaded
author | greg |
---|---|
date | Fri, 16 Dec 2016 08:50:54 -0500 |
parents | |
children | 7c40c2b303f1 |
comparison
equal
deleted
inserted
replaced
32:7418fc8f0780 | 33:390ed5192839 |
---|---|
1 #!/usr/bin/env Rscript | |
2 | |
3 suppressPackageStartupMessages(library("optparse")) | |
4 | |
5 option_list <- list( | |
6 make_option(c("-a", "--adult_mort"), action="store", dest="adult_mort", type="integer", help="Adjustment rate for adult mortality"), | |
7 make_option(c("-b", "--adult_nymph_accum"), action="store", dest="adult_nymph_accum", type="integer", help="Adjustment of DD accumulation (old nymph->adult)"), | |
8 make_option(c("-c", "--egg_mort"), action="store", dest="egg_mort", type="integer", help="Adjustment rate for egg mortality"), | |
9 make_option(c("-d", "--latitude"), action="store", dest="latitude", type="double", help="Latitude of selected location"), | |
10 make_option(c("-e", "--location"), action="store", dest="location", help="Selected location"), | |
11 make_option(c("-f", "--min_clutch_size"), action="store", dest="min_clutch_size", type="integer", help="Adjustment of minimum clutch size"), | |
12 make_option(c("-g", "--max_clutch_size"), action="store", dest="max_clutch_size", type="integer", help="Adjustment of maximum clutch size"), | |
13 make_option(c("-j", "--nymph_mort"), action="store", dest="nymph_mort", type="integer", help="Adjustment rate for nymph mortality"), | |
14 make_option(c("-k", "--old_nymph_accum"), action="store", dest="old_nymph_accum", type="integer", help="Adjustment of DD accumulation (young nymph->old nymph)"), | |
15 make_option(c("-o", "--output"), action="store", dest="output", help="Output dataset"), | |
16 make_option(c("-p", "--oviposition"), action="store", dest="oviposition", type="integer", help="Adjustment for oviposition rate"), | |
17 make_option(c("-q", "--photoperiod"), action="store", dest="photoperiod", type="double", help="Critical photoperiod for diapause induction/termination"), | |
18 make_option(c("-s", "--replications"), action="store", dest="replications", type="integer", help="Number of replications"), | |
19 make_option(c("-t", "--se_plot"), action="store", dest="se_plot", help="Plot SE"), | |
20 make_option(c("-u", "--year"), action="store", dest="year", type="integer", help="Starting year"), | |
21 make_option(c("-v", "--temperature_dataset"), action="store", dest="temperature_dataset", help="Temperature data for selected location"), | |
22 make_option(c("-y", "--young_nymph_accum"), action="store", dest="young_nymph_accum", type="integer", help="Adjustment of DD accumulation (egg->young nymph)") | |
23 ) | |
24 | |
25 parser <- OptionParser(usage="%prog [options] file", option_list=option_list) | |
26 args <- parse_args(parser, positional_arguments=TRUE) | |
27 opt <- args$options | |
28 | |
29 data.input=function(loc, start.yr, temperature.dataset) | |
30 { | |
31 expdata <- matrix(rep(0, 365 * 3), nrow=365) | |
32 # replace 2004 with start. yr | |
33 yr <- start.yr | |
34 namedat <- paste(loc, yr, ".Rdat", sep="") | |
35 temp.data <- read.csv(file=temperature.dataset, header=T) | |
36 | |
37 expdata[,1] <- c(1:365) | |
38 save(expdata, file=namedat) | |
39 namedat | |
40 } | |
41 | |
42 daylength=function(L) | |
43 { | |
44 # from Forsythe 1995 | |
45 p=0.8333 | |
46 dl <- NULL | |
47 for (i in 1:365) | |
48 { | |
49 theta <- 0.2163108 + 2 * atan(0.9671396 * tan(0.00860 * (i - 186))) | |
50 phi <- asin(0.39795 * cos(theta)) | |
51 dl[i] <- 24 - 24 / pi * acos((sin(p * pi / 180) + sin(L * pi / 180) * sin(phi)) / (cos(L * pi / 180) * cos(phi))) | |
52 } | |
53 dl # return a vector of daylength in 365 days | |
54 } | |
55 | |
56 hourtemp=function(L, date, temperature_file_path) | |
57 { | |
58 load(temperature_file_path) | |
59 threshold <- 14.17 # base development threshold for BMSB | |
60 dnp <- expdata[date, 2] # daily minimum | |
61 dxp <- expdata[date, 3] # daily maximum | |
62 dmean <- 0.5 * (dnp + dxp) | |
63 dd <- 0 # initialize degree day accumulation | |
64 | |
65 if (dxp<threshold) | |
66 { | |
67 dd <- 0 | |
68 } | |
69 else | |
70 { | |
71 dlprofile <- daylength(L) # extract daylength data for entire year | |
72 T <- NULL # initialize hourly temperature | |
73 dh <- NULL #initialize degree hour vector | |
74 # date <- 200 | |
75 y <- dlprofile[date] # calculate daylength in given date | |
76 z <- 24 - y # night length | |
77 a <- 1.86 # lag coefficient | |
78 b <- 2.20 # night coefficient | |
79 #tempdata <- read.csv("tempdata.csv") #import raw data set | |
80 # Should be outside function otherwise its redundant | |
81 risetime <- 12 - y / 2 # sunrise time | |
82 settime <- 12 + y / 2 # sunset time | |
83 ts <- (dxp - dnp) * sin(pi * (settime - 5) / (y + 2 * a)) + dnp | |
84 for (i in 1:24) | |
85 { | |
86 if (i > risetime && i<settime) | |
87 { | |
88 m <- i - 5 # number of hours after Tmin until sunset | |
89 T[i]=(dxp - dnp) * sin(pi * m / (y + 2 * a)) + dnp | |
90 if (T[i]<8.4) | |
91 { | |
92 dh[i] <- 0 | |
93 } | |
94 else | |
95 { | |
96 dh[i] <- T[i] - 8.4 | |
97 } | |
98 } | |
99 else if (i > settime) | |
100 { | |
101 n <- i - settime | |
102 T[i]=dnp + (ts - dnp) * exp( - b * n / z) | |
103 if (T[i]<8.4) | |
104 { | |
105 dh[i] <- 0 | |
106 } | |
107 else | |
108 { | |
109 dh[i] <- T[i] - 8.4 | |
110 } | |
111 } | |
112 else | |
113 { | |
114 n <- i + 24 - settime | |
115 T[i]=dnp + (ts - dnp) * exp( - b * n / z) | |
116 if (T[i]<8.4) | |
117 { | |
118 dh[i] <- 0 | |
119 } | |
120 else | |
121 { | |
122 dh[i] <- T[i] - 8.4 | |
123 } | |
124 } | |
125 } | |
126 dd <- sum(dh) / 24 | |
127 } | |
128 return=c(dmean, dd) | |
129 return | |
130 } | |
131 | |
132 dev.egg = function(temperature) | |
133 { | |
134 dev.rate= -0.9843 * temperature + 33.438 | |
135 return = dev.rate | |
136 return | |
137 } | |
138 | |
139 dev.young = function(temperature) | |
140 { | |
141 n12 <- -0.3728 * temperature + 14.68 | |
142 n23 <- -0.6119 * temperature + 25.249 | |
143 dev.rate = mean(n12 + n23) | |
144 return = dev.rate | |
145 return | |
146 } | |
147 | |
148 dev.old = function(temperature) | |
149 { | |
150 n34 <- -0.6119 * temperature + 17.602 | |
151 n45 <- -0.4408 * temperature + 19.036 | |
152 dev.rate = mean(n34 + n45) | |
153 return = dev.rate | |
154 return | |
155 } | |
156 | |
157 dev.emerg = function(temperature) | |
158 { | |
159 emerg.rate <- -0.5332 * temperature + 24.147 | |
160 return=emerg.rate | |
161 return | |
162 } | |
163 | |
164 mortality.egg=function(temperature) | |
165 { | |
166 if (temperature<12.7) | |
167 { | |
168 mort.prob = 0.8 | |
169 } | |
170 else | |
171 { | |
172 mort.prob = 0.8 - temperature / 40.0 | |
173 if (mort.prob<0) | |
174 { | |
175 mort.prob=0.01 | |
176 } | |
177 } | |
178 return=mort.prob | |
179 return | |
180 } | |
181 | |
182 mortality.nymph=function(temperature) | |
183 { | |
184 if (temperature<12.7) | |
185 { | |
186 mort.prob=0.03 | |
187 } | |
188 else | |
189 { | |
190 mort.prob=temperature * 0.0008 + 0.03 | |
191 } | |
192 return=mort.prob | |
193 return | |
194 } | |
195 | |
196 mortality.adult=function(temperature) | |
197 { | |
198 if (temperature<12.7) | |
199 { | |
200 mort.prob=0.002 | |
201 } | |
202 else | |
203 { | |
204 mort.prob=temperature * 0.0005 + 0.02 | |
205 } | |
206 return=mort.prob | |
207 return | |
208 } | |
209 | |
210 # Read in the input temperature datafile | |
211 temperature_file_path <- data.input(opt$location, opt$year, opt$temperature_dataset) | |
212 | |
213 # Initialize matrix for results from all replications | |
214 S0.rep <- S1.rep <- S2.rep <- S3.rep <- S4.rep <- S5.rep <- matrix(rep(0, 365 * opt$replications), ncol = opt$replications) | |
215 newborn.rep <- death.rep <- adult.rep <- pop.rep <- g0.rep <- g1.rep <- g2.rep <- g0a.rep <- g1a.rep <- g2a.rep <- matrix(rep(0, 365 * opt$replications), ncol=opt$replications) | |
216 | |
217 # loop through replications | |
218 for (N.rep in 1:opt$replications) | |
219 { | |
220 # during each replication | |
221 # start with 1000 individuals -- user definable as well? | |
222 n <- 1000 | |
223 # Generation, Stage, DD, T, Diapause | |
224 vec.ini <- c(0, 3, 0, 0, 0) | |
225 # overwintering, previttelogenic, DD=0, T=0, no-diapause | |
226 vec.mat <- rep(vec.ini, n) | |
227 # complete matrix for the population | |
228 vec.mat <- t(matrix(vec.mat, nrow=5)) | |
229 # complete photoperiod profile in a year, requires daylength function | |
230 ph.p <- daylength(opt$latitude) | |
231 | |
232 # time series of population size | |
233 tot.pop <- NULL | |
234 # gen.0 pop size | |
235 gen0.pop <- rep(0, 365) | |
236 gen1.pop <- rep(0, 365) | |
237 gen2.pop <- rep(0, 365) | |
238 S0 <- S1 <- S2 <- S3 <- S4 <- S5 <- rep(0, 365) | |
239 g0.adult <- g1.adult <- g2.adult <- rep(0, 365) | |
240 N.newborn <- N.death <- N.adult <- rep(0, 365) | |
241 dd.day <- rep(0, 365) | |
242 | |
243 # start tick | |
244 ptm <- proc.time() | |
245 | |
246 # all the days | |
247 for (day in 1:365) | |
248 { | |
249 # photoperiod in the day | |
250 photoperiod <- ph.p[day] | |
251 temp.profile <- hourtemp(opt$latitude, day, temperature_file_path) | |
252 mean.temp <- temp.profile[1] | |
253 dd.temp <- temp.profile[2] | |
254 dd.day[day] <- dd.temp | |
255 # trash bin for death | |
256 death.vec <- NULL | |
257 # new born | |
258 birth.vec <- NULL | |
259 | |
260 # all individuals | |
261 for (i in 1:n) | |
262 { | |
263 # find individual record | |
264 vec.ind <- vec.mat[i,] | |
265 # first of all, still alive? | |
266 # adjustment for late season mortality rate | |
267 if (opt$latitude < 40.0) | |
268 { | |
269 post.mort <- 1 | |
270 day.kill <- 300 | |
271 } | |
272 else | |
273 { | |
274 post.mort <- 2 | |
275 day.kill <- 250 | |
276 } | |
277 if (vec.ind[2] == 0) | |
278 { | |
279 # egg | |
280 death.prob = opt$egg_mort * mortality.egg(mean.temp) | |
281 } | |
282 else if (vec.ind[2] == 1 | vec.ind[2] == 2) | |
283 { | |
284 death.prob = opt$nymph_mort * mortality.nymph(mean.temp) | |
285 } | |
286 else if (vec.ind[2] == 3 | vec.ind[2] == 4 | vec.ind[2] == 5) | |
287 { | |
288 # for adult | |
289 if (day < day.kill) | |
290 { | |
291 death.prob = opt$adult_mort * mortality.adult(mean.temp) | |
292 } | |
293 else | |
294 { | |
295 # increase adult mortality after fall equinox | |
296 death.prob = opt$adult_mort * post.mort * mortality.adult(mean.temp) | |
297 } | |
298 } | |
299 # (or dependent on temperature and life stage?) | |
300 u.d <- runif(1) | |
301 if (u.d < death.prob) | |
302 { | |
303 death.vec <- c(death.vec, i) | |
304 } | |
305 else | |
306 { | |
307 # aggregrate index of dead bug | |
308 # event 1 end of diapause | |
309 if (vec.ind[1] == 0 && vec.ind[2] == 3) | |
310 { | |
311 # overwintering adult (previttelogenic) | |
312 if (photoperiod > opt$photoperiod && vec.ind[3] > 68 && day < 180) | |
313 { | |
314 # add 68C to become fully reproductively matured | |
315 # transfer to vittelogenic | |
316 vec.ind <- c(0, 4, 0, 0, 0) | |
317 vec.mat[i,] <- vec.ind | |
318 } | |
319 else | |
320 { | |
321 # add to DD | |
322 vec.ind[3] <- vec.ind[3] + dd.temp | |
323 # add 1 day in current stage | |
324 vec.ind[4] <- vec.ind[4] + 1 | |
325 vec.mat[i,] <- vec.ind | |
326 } | |
327 } | |
328 if (vec.ind[1] != 0 && vec.ind[2] == 3) | |
329 { | |
330 # NOT overwintering adult (previttelogenic) | |
331 current.gen <- vec.ind[1] | |
332 if (vec.ind[3] > 68) | |
333 { | |
334 # add 68C to become fully reproductively matured | |
335 # transfer to vittelogenic | |
336 vec.ind <- c(current.gen, 4, 0, 0, 0) | |
337 vec.mat[i,] <- vec.ind | |
338 } | |
339 else | |
340 { | |
341 # add to DD | |
342 vec.ind[3] <- vec.ind[3] + dd.temp | |
343 # add 1 day in current stage | |
344 vec.ind[4] <- vec.ind[4] + 1 | |
345 vec.mat[i,] <- vec.ind | |
346 } | |
347 } | |
348 | |
349 # event 2 oviposition -- where population dynamics comes from | |
350 if (vec.ind[2] == 4 && vec.ind[1] == 0 && mean.temp > 10) | |
351 { | |
352 # vittelogenic stage, overwintering generation | |
353 if (vec.ind[4] == 0) | |
354 { | |
355 # just turned in vittelogenic stage | |
356 n.birth=round(runif(1, 2 + min.ovi.adj, 8 + max.ovi.adj)) | |
357 } | |
358 else | |
359 { | |
360 # daily probability of birth | |
361 p.birth = opt$oviposition * 0.01 | |
362 u1 <- runif(1) | |
363 if (u1 < p.birth) | |
364 { | |
365 n.birth=round(runif(1, 2, 8)) | |
366 } | |
367 } | |
368 # add to DD | |
369 vec.ind[3] <- vec.ind[3] + dd.temp | |
370 # add 1 day in current stage | |
371 vec.ind[4] <- vec.ind[4] + 1 | |
372 vec.mat[i,] <- vec.ind | |
373 if (n.birth > 0) | |
374 { | |
375 # add new birth -- might be in different generations | |
376 # generation + 1 | |
377 new.gen <- vec.ind[1] + 1 | |
378 # egg profile | |
379 new.ind <- c(new.gen, 0, 0, 0, 0) | |
380 new.vec <- rep(new.ind, n.birth) | |
381 # update batch of egg profile | |
382 new.vec <- t(matrix(new.vec, nrow=5)) | |
383 # group with total eggs laid in that day | |
384 birth.vec <- rbind(birth.vec, new.vec) | |
385 } | |
386 } | |
387 | |
388 # event 2 oviposition -- for gen 1. | |
389 if (vec.ind[2] == 4 && vec.ind[1] == 1 && mean.temp > 12.5 && day < 222) | |
390 { | |
391 # vittelogenic stage, 1st generation | |
392 if (vec.ind[4] == 0) | |
393 { | |
394 # just turned in vittelogenic stage | |
395 n.birth=round(runif(1, 2 + min.ovi.adj, 8 + max.ovi.adj)) | |
396 } | |
397 else | |
398 { | |
399 # daily probability of birth | |
400 p.birth = opt$oviposition * 0.01 | |
401 u1 <- runif(1) | |
402 if (u1 < p.birth) | |
403 { | |
404 n.birth = round(runif(1, 2, 8)) | |
405 } | |
406 } | |
407 # add to DD | |
408 vec.ind[3] <- vec.ind[3] + dd.temp | |
409 # add 1 day in current stage | |
410 vec.ind[4] <- vec.ind[4] + 1 | |
411 vec.mat[i,] <- vec.ind | |
412 if (n.birth > 0) | |
413 { | |
414 # add new birth -- might be in different generations | |
415 # generation + 1 | |
416 new.gen <- vec.ind[1] + 1 | |
417 # egg profile | |
418 new.ind <- c(new.gen, 0, 0, 0, 0) | |
419 new.vec <- rep(new.ind, n.birth) | |
420 # update batch of egg profile | |
421 new.vec <- t(matrix(new.vec, nrow=5)) | |
422 # group with total eggs laid in that day | |
423 birth.vec <- rbind(birth.vec, new.vec) | |
424 } | |
425 } | |
426 | |
427 # event 3 development (with diapause determination) | |
428 # event 3.1 egg development to young nymph (vec.ind[2]=0 -> egg) | |
429 if (vec.ind[2] == 0) | |
430 { | |
431 # egg stage | |
432 # add to DD | |
433 vec.ind[3] <- vec.ind[3] + dd.temp | |
434 if (vec.ind[3] >= (68 + dd.adj1)) | |
435 { | |
436 # from egg to young nymph, DD requirement met | |
437 current.gen <- vec.ind[1] | |
438 # transfer to young nym stage | |
439 vec.ind <- c(current.gen, 1, 0, 0, 0) | |
440 } | |
441 else | |
442 { | |
443 # add 1 day in current stage | |
444 vec.ind[4] <- vec.ind[4] + 1 | |
445 } | |
446 vec.mat[i,] <- vec.ind | |
447 } | |
448 | |
449 # event 3.2 young nymph to old nymph (vec.ind[2]=1 -> young nymph: determines diapause) | |
450 if (vec.ind[2] == 1) | |
451 { | |
452 # young nymph stage | |
453 # add to DD | |
454 vec.ind[3] <- vec.ind[3] + dd.temp | |
455 if (vec.ind[3] >= (250 +dd.adj2)) | |
456 { | |
457 # from young to old nymph, DD requirement met | |
458 current.gen <- vec.ind[1] | |
459 # transfer to old nym stage | |
460 vec.ind <- c(current.gen, 2, 0, 0, 0) | |
461 if (photoperiod < opt$photoperiod && day > 180) | |
462 { | |
463 vec.ind[5] <- 1 | |
464 } # prepare for diapausing | |
465 } | |
466 else | |
467 { | |
468 # add 1 day in current stage | |
469 vec.ind[4] <- vec.ind[4] + 1 | |
470 } | |
471 vec.mat[i,] <- vec.ind | |
472 } | |
473 | |
474 # event 3.3 old nymph to adult: previttelogenic or diapausing? | |
475 if (vec.ind[2] == 2) | |
476 { | |
477 # old nymph stage | |
478 # add to DD | |
479 vec.ind[3] <- vec.ind[3] + dd.temp | |
480 if (vec.ind[3] >= (200 + dd.adj3)) | |
481 { | |
482 # from old to adult, DD requirement met | |
483 current.gen <- vec.ind[1] | |
484 if (vec.ind[5] == 0) | |
485 { | |
486 # non-diapausing adult -- previttelogenic | |
487 vec.ind <- c(current.gen, 3, 0, 0, 0) | |
488 } | |
489 else | |
490 { | |
491 # diapausing | |
492 vec.ind <- c(current.gen, 5, 0, 0, 1) | |
493 } | |
494 } | |
495 else | |
496 { | |
497 # add 1 day in current stage | |
498 vec.ind[4] <- vec.ind[4] + 1 | |
499 } | |
500 vec.mat[i,] <- vec.ind | |
501 } | |
502 | |
503 # event 4 growing of diapausing adult (unimportant, but still necessary)## | |
504 if (vec.ind[2] == 5) | |
505 { | |
506 vec.ind[3] <- vec.ind[3] + dd.temp | |
507 vec.ind[4] <- vec.ind[4] + 1 | |
508 vec.mat[i,] <- vec.ind | |
509 } | |
510 } # else if it is still alive | |
511 } # end of the individual bug loop | |
512 | |
513 # find how many died | |
514 n.death <- length(death.vec) | |
515 if (n.death > 0) | |
516 { | |
517 vec.mat <- vec.mat[-death.vec, ] | |
518 } | |
519 # remove record of dead | |
520 # find how many new born | |
521 n.newborn <- length(birth.vec[,1]) | |
522 vec.mat <- rbind(vec.mat, birth.vec) | |
523 # update population size for the next day | |
524 n <- n - n.death + n.newborn | |
525 | |
526 # aggregate results by day | |
527 tot.pop <- c(tot.pop, n) | |
528 # egg | |
529 s0 <- sum(vec.mat[,2] == 0) | |
530 # young nymph | |
531 s1 <- sum(vec.mat[,2] == 1) | |
532 # old nymph | |
533 s2 <- sum(vec.mat[,2] == 2) | |
534 # previtellogenic | |
535 s3 <- sum(vec.mat[,2] == 3) | |
536 # vitellogenic | |
537 s4 <- sum(vec.mat[,2] == 4) | |
538 # diapausing | |
539 s5 <- sum(vec.mat[,2] == 5) | |
540 # overwintering adult | |
541 gen0 <- sum(vec.mat[,1] == 0) | |
542 # first generation | |
543 gen1 <- sum(vec.mat[,1] == 1) | |
544 # second generation | |
545 gen2 <- sum(vec.mat[,1] == 2) | |
546 # sum of all adults | |
547 n.adult <- sum(vec.mat[,2] == 3) + sum(vec.mat[,2] == 4) + sum(vec.mat[,2] == 5) | |
548 # gen.0 pop size | |
549 gen0.pop[day] <- gen0 | |
550 gen1.pop[day] <- gen1 | |
551 gen2.pop[day] <- gen2 | |
552 S0[day] <- s0 | |
553 S1[day] <- s1 | |
554 S2[day] <- s2 | |
555 S3[day] <- s3 | |
556 S4[day] <- s4 | |
557 S5[day] <- s5 | |
558 g0.adult[day] <- sum(vec.mat[,1] == 0) | |
559 g1.adult[day] <- sum((vec.mat[,1] == 1 & vec.mat[,2] == 3) | (vec.mat[,1] == 1 & vec.mat[,2] == 4) | (vec.mat[,1] == 1 & vec.mat[,2] == 5)) | |
560 g2.adult[day] <- sum((vec.mat[,1]== 2 & vec.mat[,2] == 3) | (vec.mat[,1] == 2 & vec.mat[,2] == 4) | (vec.mat[,1] == 2 & vec.mat[,2] == 5)) | |
561 | |
562 N.newborn[day] <- n.newborn | |
563 N.death[day] <- n.death | |
564 N.adult[day] <- n.adult | |
565 #print(c(N.rep, day, n, n.adult)) | |
566 } # end of 365 days | |
567 | |
568 dd.cum <- cumsum(dd.day) | |
569 # collect all the outputs | |
570 S0.rep[,N.rep] <- S0 | |
571 S1.rep[,N.rep] <- S1 | |
572 S2.rep[,N.rep] <- S2 | |
573 S3.rep[,N.rep] <- S3 | |
574 S4.rep[,N.rep] <- S4 | |
575 S5.rep[,N.rep] <- S5 | |
576 newborn.rep[,N.rep] <- N.newborn | |
577 death.rep[,N.rep] <- N.death | |
578 adult.rep[,N.rep] <- N.adult | |
579 pop.rep[,N.rep] <- tot.pop | |
580 g0.rep[,N.rep] <- gen0.pop | |
581 g1.rep[,N.rep] <- gen1.pop | |
582 g2.rep[,N.rep] <- gen2.pop | |
583 g0a.rep[,N.rep] <- g0.adult | |
584 g1a.rep[,N.rep] <- g1.adult | |
585 g2a.rep[,N.rep] <- g2.adult | |
586 } | |
587 | |
588 # save(dd.day, dd.cum, S0.rep, S1.rep, S2.rep, S3.rep, S4.rep, S5.rep, newborn.rep, death.rep, adult.rep, pop.rep, g0.rep, g1.rep, g2.rep, g0a.rep, g1a.rep, g2a.rep, file=opt$output) | |
589 # maybe do not need to export this bit, but for now just leave it as-is | |
590 # do we need to export this Rdat file? | |
591 | |
592 # Data analysis and visualization | |
593 # default: plot 1 year of result | |
594 # but can be expanded to accommodate multiple years | |
595 n.yr <- 1 | |
596 day.all <- c(1:365 * n.yr) | |
597 | |
598 # mean value for adults | |
599 sa <- apply((S3.rep + S4.rep + S5.rep), 1, mean) | |
600 # mean value for nymphs | |
601 sn <- apply((S1.rep + S2.rep), 1,mean) | |
602 # mean value for eggs | |
603 se <- apply(S0.rep, 1, mean) | |
604 # mean value for P | |
605 g0 <- apply(g0.rep, 1, mean) | |
606 # mean value for F1 | |
607 g1 <- apply(g1.rep, 1, mean) | |
608 # mean value for F2 | |
609 g2 <- apply(g2.rep, 1, mean) | |
610 # mean value for P adult | |
611 g0a <- apply(g0a.rep, 1, mean) | |
612 # mean value for F1 adult | |
613 g1a <- apply(g1a.rep, 1, mean) | |
614 # mean value for F2 adult | |
615 g2a <- apply(g2a.rep, 1, mean) | |
616 | |
617 # SE for adults | |
618 sa.se <- apply((S3.rep + S4.rep + S5.rep), 1, sd) / sqrt(opt$replications) | |
619 # SE for nymphs | |
620 sn.se <- apply((S1.rep + S2.rep) / sqrt(opt$replications), 1, sd) | |
621 # SE for eggs | |
622 se.se <- apply(S0.rep ,1 ,sd) / sqrt(opt$replications) | |
623 # SE value for P | |
624 g0.se <- apply(g0.rep, 1, sd) / sqrt(opt$replications) | |
625 # SE for F1 | |
626 g1.se <- apply(g1.rep, 1, sd) / sqrt(opt$replications) | |
627 # SE for F2 | |
628 g2.se <- apply(g2.rep, 1, sd) / sqrt(opt$replications) | |
629 # SE for P adult | |
630 g0a.se <- apply(g0a.rep, 1, sd) / sqrt(opt$replications) | |
631 # SE for F1 adult | |
632 g1a.se <- apply(g1a.rep, 1, sd) / sqrt(opt$replications) | |
633 # SE for F2 adult | |
634 g2a.se <- apply(g2a.rep, 1, sd) / sqrt(opt$replications) | |
635 | |
636 dev.new(width = 9, height = 9) | |
637 | |
638 # Start PDF device driver to save charts to output. | |
639 pdf(file=opt$output, height=20, width=20, bg="white") | |
640 | |
641 par(mar = c(5, 6, 4, 4), mfrow=c(3, 1)) | |
642 | |
643 # Subfigure 2: population size by life stage | |
644 plot(day.all, sa, main = "Total Population Size by Life Stage", type = "l", ylim = c(0, max(se + se.se, sn + sn.se, sa + sa.se)), axes = F, lwd = 2, xlab = "", ylab = "Number", cex = 2, cex.lab = 2, cex.axis = 2, cex.main = 2) | |
645 # Young and old nymphs | |
646 lines(day.all, sn, lwd = 2, lty = 1, col = 2) | |
647 # Eggs | |
648 lines(day.all, se, lwd = 2, lty = 1, col = 4) | |
649 axis(1, at = c(1:12) * 30 - 15, cex.axis = 2, labels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec")) | |
650 axis(2, cex.axis = 2) | |
651 leg.text <- c("Egg", "Nymph", "Adult") | |
652 legend("topleft", leg.text, lty = c(1, 1, 1), col = c(4, 2, 1), cex = 2) | |
653 if (opt$se_plot == 1) | |
654 { | |
655 # add SE lines to plot | |
656 # SE for adults | |
657 lines (day.all, sa + sa.se, lty = 2) | |
658 lines (day.all, sa - sa.se, lty = 2) | |
659 # SE for nymphs | |
660 lines (day.all, sn + sn.se, col = 2, lty = 2) | |
661 lines (day.all, sn - sn.se, col = 2, lty = 2) | |
662 # SE for eggs | |
663 lines (day.all, se + se.se, col = 4, lty = 2) | |
664 lines (day.all, se - se.se, col = 4, lty = 2) | |
665 } | |
666 | |
667 # Subfigure 3: population size by generation | |
668 plot(day.all, g0, main = "Total Population Size by Generation", type = "l", ylim = c(0, max(g2)), axes = F, lwd = 2, xlab = "", ylab = "Number", cex = 2, cex.lab = 2, cex.axis = 2, cex.main = 2) | |
669 lines(day.all, g1, lwd = 2, lty = 1, col = 2) | |
670 lines(day.all, g2, lwd = 2, lty = 1, col = 4) | |
671 axis(1, at = c(1:12) * 30 - 15, cex.axis = 2, labels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec")) | |
672 axis(2, cex.axis = 2) | |
673 leg.text <- c("P", "F1", "F2") | |
674 legend("topleft", leg.text, lty = c(1, 1, 1), col =c(1, 2, 4), cex = 2) | |
675 if (opt$se_plot == 1) | |
676 { | |
677 # add SE lines to plot | |
678 # SE for adults | |
679 lines (day.all, g0 + g0.se, lty = 2) | |
680 lines (day.all, g0 - g0.se, lty = 2) | |
681 # SE for nymphs | |
682 lines (day.all, g1 + g1.se, col = 2, lty = 2) | |
683 lines (day.all, g1 - g1.se, col = 2, lty = 2) | |
684 # SE for eggs | |
685 lines (day.all, g2 + g2.se, col = 4, lty = 2) | |
686 lines (day.all, g2 - g2.se, col = 4, lty = 2) | |
687 } | |
688 | |
689 # Subfigure 4: adult population size by generation | |
690 plot(day.all, g0a, ylim = c(0, max(g2a) + 100), main = "Adult Population Size by Generation", type = "l", axes = F, lwd = 2, xlab = "Year", ylab = "Number", cex = 2, cex.lab = 2, cex.axis = 2, cex.main = 2) | |
691 lines(day.all, g1a, lwd = 2, lty = 1, col = 2) | |
692 lines(day.all, g2a, lwd = 2, lty = 1, col = 4) | |
693 axis(1, at = c(1:12) * 30 - 15, cex.axis = 2, labels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec")) | |
694 axis(2, cex.axis = 2) | |
695 leg.text <- c("P", "F1", "F2") | |
696 legend("topleft", leg.text, lty = c(1, 1, 1), col = c(1, 2, 4), cex = 2) | |
697 if (opt$se_plot == 1) | |
698 { | |
699 # add SE lines to plot | |
700 # SE for adults | |
701 lines (day.all, g0a + g0a.se, lty = 2) | |
702 lines (day.all, g0a - g0a.se, lty = 2) | |
703 # SE for nymphs | |
704 lines (day.all, g1a + g1a.se, col = 2, lty = 2) | |
705 lines (day.all, g1a - g1a.se, col = 2, lty = 2) | |
706 # SE for eggs | |
707 lines (day.all, g2a + g2a.se, col = 4, lty = 2) | |
708 lines (day.all, g2a - g2a.se, col = 4, lty = 2) | |
709 } | |
710 | |
711 # Turn off device driver to flush output. | |
712 dev.off() |