0
|
1 #!/usr/bin/env Rscript
|
|
2
|
11
|
3 #suppressPackageStartupMessages(library("optparse"))
|
0
|
4
|
13
|
5 options_list <- list(
|
15
|
6 make_option(c("-o", "--output"), help="Output dataset")
|
0
|
7 )
|
|
8
|
13
|
9 parser <- OptionParser(usage="%prog [options] file", options_list)
|
|
10 args <- parse_args(parser, positional_arguments=TRUE)
|
|
11 opt <- args$options
|
|
12
|
|
13
|
0
|
14 daylength = function(L){
|
|
15 # from Forsythe 1995
|
|
16 p = 0.8333
|
|
17 dl <- NULL
|
|
18 for (i in 1:365) {
|
|
19 theta <- 0.2163108 + 2 * atan(0.9671396 * tan(0.00860 * (i - 186)))
|
|
20 phi <- asin(0.39795 * cos(theta))
|
|
21 dl[i] <- 24 - 24/pi * acos((sin(p * pi/180) + sin(L * pi/180) * sin(phi))/(cos(L * pi/180) * cos(phi)))
|
|
22 }
|
|
23 # return a vector of daylength in 365 days
|
|
24 dl
|
|
25 }
|
|
26
|
|
27
|
|
28 # source("daylength.R")
|
|
29 hourtemp = function(L,date){
|
|
30 # L = 37.5 specify this in main program
|
|
31 # base development threshold for BMSB
|
|
32 threshold <- 12.7
|
|
33 # threshold2 <- threshold/24 degree hour accumulation
|
|
34 #expdata <- tempdata[1:365,11:13] # Use daily max, min, mean
|
|
35 # daily minimum
|
|
36 dnp <- expdata[date,2]
|
|
37 # daily maximum
|
|
38 dxp <- expdata[date,3]
|
|
39 dmean <- 0.5 * (dnp + dxp)
|
|
40 #if (dmean>0) {
|
|
41 #dnp <- dnp - k1 * dmean
|
|
42 #dxp <- dxp + k2 * dmean
|
|
43 #} else {
|
|
44 #dnp <- dnp + k1 * dmean
|
|
45 #dxp <- dxp - k2 * dmean
|
|
46 #}
|
|
47 dd <- 0 # initialize degree day accumulation
|
|
48
|
|
49 if (dxp<threshold) {
|
|
50 dd <- 0
|
|
51 } else {
|
|
52 # extract daylength data for entire year
|
|
53 dlprofile <- daylength(L)
|
|
54 # initialize hourly temperature
|
|
55 T <- NULL
|
|
56 #initialize degree hour vector
|
|
57 dh <- NULL
|
|
58 # calculate daylength in given date
|
|
59 # date <- 200
|
|
60 y <- dlprofile[date]
|
|
61 # night length
|
|
62 z <- 24 - y
|
|
63 # lag coefficient
|
|
64 a <- 1.86
|
|
65 # night coefficient
|
|
66 b <- 2.20
|
|
67 #import raw data set
|
|
68 #tempdata <- read.csv("tempdata.csv")
|
|
69 # Should be outside function otherwise its redundant
|
|
70 # sunrise time
|
|
71 risetime <- 12 - y/2
|
|
72 # sunset time
|
|
73 settime <- 12 + y/2
|
|
74 ts <- (dxp - dnp) * sin(pi * (settime-5)/(y + 2 * a)) + dnp
|
|
75 for (i in 1:24) {
|
|
76 if (i > risetime && i < settime) {
|
|
77 # number of hours after Tmin until sunset
|
|
78 m <- i - 5
|
|
79 T[i] = (dxp - dnp) * sin(pi * m/(y + 2 * a)) + dnp
|
|
80 if (T[i]<8.4) {
|
|
81 dh[i] <- 0
|
|
82 } else {
|
|
83 dh[i] <- T[i] - 8.4
|
|
84 }
|
|
85 } else if (i>settime) {
|
|
86 n <- i - settime
|
|
87 T[i] = dnp + (ts - dnp) * exp(-b * n/z)
|
|
88 if (T[i]<8.4) {
|
|
89 dh[i] <- 0
|
|
90 } else {
|
|
91 dh[i] <- T[i] - 8.4
|
|
92 }
|
|
93 } else {
|
|
94 n <- i + 24 - settime
|
|
95 T[i] = dnp + (ts - dnp) * exp(-b * n / z)
|
|
96 if (T[i]<8.4) {
|
|
97 dh[i] <- 0
|
|
98 } else {
|
|
99 dh[i] <- T[i] - 8.4
|
|
100 }
|
|
101 }
|
|
102 }
|
|
103 dd <- sum(dh) / 24
|
|
104 }
|
|
105 return = c(dmean, dd)
|
|
106 return
|
|
107 }
|
|
108
|
|
109
|
|
110 mortality.egg = function(temperature) {
|
|
111 if (temperature < 12.7) {
|
|
112 mort.prob = 1
|
|
113 } else {
|
|
114 # 100% mortality if <12.7
|
|
115 mort.prob = 0.8 - temperature / 40
|
|
116 if (mort.prob<0) {
|
|
117 mort.prob = 0.01
|
|
118 }
|
|
119 }
|
|
120 return = mort.prob
|
|
121 return
|
|
122 }
|
|
123
|
|
124
|
|
125 mortality.nymph = function(temperature) {
|
|
126 if (temperature<12.7) {
|
|
127 mort.prob = 0.03
|
|
128 } else {
|
|
129 # at low temperature
|
|
130 mort.prob = -temperature * 0.0008 + 0.03
|
|
131 }
|
|
132 return = mort.prob
|
|
133 return
|
|
134 }
|
|
135
|
|
136
|
|
137 mortality.adult = function(temperature) {
|
|
138 if (temperature < 12.7) {
|
|
139 mort.prob = 0.002
|
|
140 } else {
|
|
141 mort.prob = -temperature * 0.0005 + 0.02
|
|
142 }
|
|
143 return = mort.prob
|
|
144 return
|
|
145 }
|
|
146
|
|
147
|
|
148 # model initialization
|
11
|
149 # TODO: add tool params for the following options.
|
0
|
150 # start with 1000 individuals
|
|
151 n <- 1000
|
|
152 # Generation, Stage, DD, T, Diapause
|
|
153 vec.ini <- c(0,3,0,0,0)
|
|
154 # overwintering, previttelogenic, DD = 0, T = 0, no-diapause
|
|
155 vec.mat <- rep(vec.ini,n)
|
|
156 # complete matrix for the population
|
|
157 vec.mat <- t(matrix(vec.mat, nrow = 5))
|
|
158 # latitude for Asheville NC
|
|
159 L <- 35.58
|
|
160 # complete photoperiod profile in a year, requires daylength function
|
|
161 ph.p <- daylength(L)
|
|
162
|
|
163 # load temperature data@location/year
|
|
164 load("asheville2014.Rdat")
|
|
165
|
|
166 # time series of population size
|
|
167 tot.pop <- NULL
|
|
168
|
|
169 # gen.0 pop size
|
|
170 gen0.pop <- rep(0, 365)
|
|
171 gen1.pop <- rep(0, 365)
|
|
172 gen2.pop <- rep(0, 365)
|
|
173
|
|
174 # aggregate
|
|
175 S0 <- S1 <- S2 <- S3 <- S4 <- S5 <- rep(0, 365)
|
|
176 g0.adult <- g1.adult <- g2.adult <- rep(0, 365)
|
|
177
|
|
178 # birth death adults
|
|
179 N.newborn <- N.death <- N.adult <- rep(0, 365)
|
|
180
|
|
181 # degree-day accumulation
|
|
182 dd.day <- rep(0, 365)
|
|
183
|
|
184 # start tick
|
|
185 ptm <- proc.time()
|
|
186
|
|
187 for (n.sim in 1:1000) {
|
|
188 # loop through 1000 simulations
|
|
189 for (day in 1:365) {
|
|
190 # loop through 365 day/yr
|
|
191 photoperiod <- ph.p[day]
|
|
192 # photoperiod in the day
|
|
193 temp.profile <- hourtemp(L,day)
|
|
194 # temperature profile
|
|
195 mean.temp <- temp.profile[1]
|
|
196 # mean temp
|
|
197 dd.temp <- temp.profile[2]
|
|
198 # degree-day
|
|
199 dd.day[day] <- dd.temp
|
|
200 death.vec <- NULL
|
|
201 # trash bin for death
|
|
202 birth.vec <- NULL
|
|
203 # record new born
|
|
204 for (i in 1:n) {
|
|
205 # loop through all individual
|
|
206 vec.ind <- vec.mat[i,]
|
|
207 # find individual record
|
|
208 # first of all, still alive?
|
|
209 if (vec.ind[2] == 0) {
|
|
210 # egg
|
|
211 death.prob = mortality.egg(mean.temp)
|
|
212 } else if (vec.ind[2] == 1 | vec.ind[2] == 2) {
|
|
213 # nymph
|
|
214 death.prob = mortality.nymph(mean.temp)
|
|
215 } else if (vec.ind[2] == 3 | vec.ind[2] == 4 | vec.ind[2] == 5) {
|
|
216 # for adult
|
|
217 death.prob = mortality.adult(mean.temp)
|
|
218 }
|
|
219 u.d <- runif(1)
|
|
220 if (u.d<death.prob) {
|
|
221 death.vec <- c(death.vec,i)
|
|
222 } else {
|
|
223 # aggregrate index of dead bug
|
|
224 # event 1 end of diapause
|
|
225 if (vec.ind[1] == 0 && vec.ind[2] == 3) {
|
|
226 # overwintering adult (previttelogenic)
|
|
227 if (photoperiod>13.5 && vec.ind[3] > 68 && day < 180) {
|
|
228 # add 68C to become fully reproductively matured
|
|
229 # transfer to vittelogenic
|
|
230 vec.ind <- c(0,4,0,0,0)
|
|
231 vec.mat[i,] <- vec.ind
|
|
232 } else {
|
|
233 # add to DD
|
|
234 vec.ind[3] <- vec.ind[3] + dd.temp
|
|
235 vec.ind[4] <- vec.ind[4] + 1 # add 1 day in current stage
|
|
236 vec.mat[i,] <- vec.ind
|
|
237 }
|
|
238 }
|
|
239 if (vec.ind[1]!=0 && vec.ind[2] == 3) {
|
|
240 # NOT overwintering adult (previttelogenic)
|
|
241 current.gen <- vec.ind[1]
|
|
242 if (vec.ind[3]>68) {
|
|
243 # add 68C to become fully reproductively matured
|
|
244 # transfer to vittelogenic
|
|
245 vec.ind <- c(current.gen,4,0,0,0)
|
|
246 vec.mat[i,] <- vec.ind
|
|
247 } else {
|
|
248 # add to DD
|
|
249 vec.ind[3] <- vec.ind[3] + dd.temp
|
|
250 # add 1 day in current stage
|
|
251 vec.ind[4] <- vec.ind[4] + 1
|
|
252 vec.mat[i,] <- vec.ind
|
|
253 }
|
|
254 }
|
|
255 # event 2 oviposition -- where population dynamics comes from
|
|
256 # vittelogenic stage, overwintering generation
|
|
257 if (vec.ind[2] == 4 && vec.ind[1] == 0 && mean.temp>10) {
|
|
258 if (vec.ind[4] == 0) {
|
|
259 # just turned in vittelogenic stage
|
|
260 n.birth = round(runif(1,10,20))
|
|
261 } else {
|
|
262 p.birth = 1/4/75
|
|
263 # prob of birth
|
|
264 u1 <- runif(1)
|
|
265 if (u1<p.birth) {
|
|
266 n.birth = n.birth
|
|
267 }
|
|
268 }
|
|
269 # add to DD
|
|
270 vec.ind[3] <- vec.ind[3] + dd.temp
|
|
271 # add 1 day in current stage
|
|
272 vec.ind[4] <- vec.ind[4] + 1
|
|
273 vec.mat[i,] <- vec.ind
|
|
274 if (n.birth>0) {
|
|
275 # add new birth -- might be in different generations
|
|
276 # generation + 1
|
|
277 new.gen <- vec.ind[1] + 1
|
|
278 # egg profile
|
|
279 new.ind <- c(new.gen,0,0,0,0)
|
|
280 new.vec <- rep(new.ind,n.birth)
|
|
281 # update batch of egg profile
|
|
282 new.vec <- t(matrix(new.vec,nrow = 5))
|
|
283 # group with total eggs laid in that day
|
|
284 birth.vec <- rbind(birth.vec,new.vec)
|
|
285 }
|
|
286 }
|
|
287 # event 2 oviposition -- for gen 1.
|
|
288 if (vec.ind[2] == 4 && vec.ind[1] == 1 && mean.temp>12.5 && day<222) {
|
|
289 # vittelogenic stage, 1st generation
|
|
290 if (vec.ind[4] == 0) {
|
|
291 # just turned in vittelogenic stage
|
|
292 n.birth = round(runif(1,10,20))
|
|
293 } else {
|
|
294 p.birth = 1/4/75
|
|
295 u1 <- runif(1)
|
|
296 if (u1<p.birth) {
|
|
297 n.birth = n.birth
|
|
298 }
|
|
299 }
|
|
300 # add to DD
|
|
301 vec.ind[3] <- vec.ind[3] + dd.temp
|
|
302 # add 1 day in current stage
|
|
303 vec.ind[4] <- vec.ind[4] + 1
|
|
304 vec.mat[i,] <- vec.ind
|
|
305 if (n.birth>0) {
|
|
306 # add new birth -- might be in different generations
|
|
307 # generation + 1
|
|
308 new.gen <- vec.ind[1] + 1
|
|
309 # egg profile
|
|
310 new.ind <- c(new.gen,0,0,0,0)
|
|
311 new.vec <- rep(new.ind,n.birth)
|
|
312 # update batch of egg profile
|
|
313 new.vec <- t(matrix(new.vec,nrow = 5))
|
|
314 # group with total eggs laid in that day
|
|
315 birth.vec <- rbind(birth.vec,new.vec)
|
|
316 }
|
|
317 }
|
|
318 # event 3 development (with diapause determination)
|
|
319 # event 3.1 egg development to young nymph (vec.ind[2] = 0 -> egg)
|
|
320 # egg stage
|
|
321 if (vec.ind[2] == 0) {
|
|
322 # add to DD
|
|
323 vec.ind[3] <- vec.ind[3] + dd.temp
|
|
324 # from egg to young nymph
|
|
325 if (vec.ind[3] >= 53.30 && -0.9843 * dd.temp + 33.438>0) {
|
|
326 current.gen <- vec.ind[1]
|
|
327 # transfer to young nym stage
|
|
328 vec.ind <- c(current.gen,1,0,0,0)
|
|
329 } else {
|
|
330 # add 1 day in current stage
|
|
331 vec.ind[4] <- vec.ind[4] + 1
|
|
332 }
|
|
333 vec.mat[i,] <- vec.ind
|
|
334 }
|
|
335 # event 3.2 young nymph to old nymph (vec.ind[2] = 1 -> young nymph: determines diapause)
|
|
336 # young nymph stage
|
|
337 if (vec.ind[2] == 1) {
|
|
338 # add to DD
|
|
339 vec.ind[3] <- vec.ind[3] + dd.temp
|
|
340 # from young to old nymph
|
|
341 if (vec.ind[3] >= 537/2 && -0.45 * dd.temp + 18>0) {
|
|
342 current.gen <- vec.ind[1]
|
|
343 # transfer to old nym stage
|
|
344 vec.ind <- c(current.gen,2,0,0,0)
|
|
345 # prepare for diapausing
|
|
346 if (photoperiod<13.5 && day > 180) {
|
|
347 vec.ind[5] <- 1
|
|
348 }
|
|
349 } else {
|
|
350 # add 1 day in current stage
|
|
351 vec.ind[4] <- vec.ind[4] + 1
|
|
352 }
|
|
353 vec.mat[i,] <- vec.ind
|
|
354 }
|
|
355 # event 3.3 old nymph to adult: previttelogenic or diapausing?
|
|
356 # old nymph stage
|
|
357 if (vec.ind[2] == 2) {
|
|
358 # add to DD
|
|
359 vec.ind[3] <- vec.ind[3] + dd.temp
|
|
360 # from old to adult
|
|
361 if (vec.ind[3] >= 537/2 && -0.50 * dd.temp + 22>0) {
|
|
362 current.gen <- vec.ind[1]
|
|
363 # non-diapausing adult -- previttelogenic
|
|
364 if (vec.ind[5] == 0) {
|
|
365 vec.ind <- c(current.gen,3,0,0,0)
|
|
366 # diapausing
|
|
367 } else {
|
|
368 vec.ind <- c(current.gen,5,0,0,1)
|
|
369 }
|
|
370 } else {
|
|
371 # add 1 day in current stage
|
|
372 vec.ind[4] <- vec.ind[4] + 1
|
|
373 }
|
|
374 vec.mat[i,] <- vec.ind
|
|
375 }
|
|
376 # event 4 growing of diapausing adult (unimportant, but still necessary)##
|
|
377 if (vec.ind[2] == 5) {
|
|
378 vec.ind[3] <- vec.ind[3] + dd.temp
|
|
379 vec.ind[4] <- vec.ind[4] + 1
|
|
380 vec.mat[i,] <- vec.ind
|
|
381 }
|
|
382 } # else if it is still alive
|
|
383 } # end of the individual bug loop
|
|
384 # find how many died
|
|
385 n.death <- length(death.vec)
|
|
386 if (n.death>0) {
|
|
387 vec.mat <- vec.mat[-death.vec, ]
|
|
388 }
|
|
389 # remove record of dead
|
|
390 # find how many new born
|
|
391 n.newborn <- length(birth.vec[,1])
|
|
392 vec.mat <- rbind(vec.mat,birth.vec)
|
|
393 # update population size for the next day
|
|
394 n <- n-n.death + n.newborn
|
|
395
|
|
396 # aggregate results by day
|
|
397 tot.pop <- c(tot.pop,n)
|
|
398 # egg
|
|
399 s0 <- sum(vec.mat[,2] == 0)
|
|
400 # young nymph
|
|
401 s1 <- sum(vec.mat[,2] == 1)
|
|
402 # old nymph
|
|
403 s2 <- sum(vec.mat[,2] == 2)
|
|
404 # previtellogenic
|
|
405 s3 <- sum(vec.mat[,2] == 3)
|
|
406 # vitellogenic
|
|
407 s4 <- sum(vec.mat[,2] == 4)
|
|
408 # diapausing
|
|
409 s5 <- sum(vec.mat[,2] == 5)
|
|
410 # overwintering adult
|
|
411 gen0 <- sum(vec.mat[,1] == 0)
|
|
412 # first generation
|
|
413 gen1 <- sum(vec.mat[,1] == 1)
|
|
414 # second generation
|
|
415 gen2 <- sum(vec.mat[,1] == 2)
|
|
416 # sum of all adults
|
|
417 n.adult <- sum(vec.mat[,2] == 3) + sum(vec.mat[,2] == 4) + sum(vec.mat[,2] == 5)
|
|
418 # gen.0 pop size
|
|
419 gen0.pop[day] <- gen0
|
|
420 gen1.pop[day] <- gen1
|
|
421 gen2.pop[day] <- gen2
|
|
422 S0[day] <- s0
|
|
423 S1[day] <- s1
|
|
424 S2[day] <- s2
|
|
425 S3[day] <- s3
|
|
426 S4[day] <- s4
|
|
427 S5[day] <- s5
|
|
428 g0.adult[day] <- sum(vec.mat[,1] == 0)
|
|
429 g1.adult[day] <- sum((vec.mat[,1] == 1 & vec.mat[,2] == 3) | (vec.mat[,1] == 1 & vec.mat[,2] == 4) | (vec.mat[,1] == 1 & vec.mat[,2] == 5))
|
|
430 g2.adult[day] <- sum((vec.mat[,1] == 2 & vec.mat[,2] == 3) | (vec.mat[,1] == 2 & vec.mat[,2] == 4) | (vec.mat[,1] == 2 & vec.mat[,2] == 5))
|
|
431 N.newborn[day] <- n.newborn
|
|
432 N.death[day] <- n.death
|
|
433 N.adult[day] <- n.adult
|
|
434 }
|
11
|
435 #print(n.sim)
|
0
|
436 }
|
|
437
|
|
438 proc.time() - ptm
|
|
439 dd.cum <- cumsum(dd.day)
|
11
|
440 save(dd.day, dd.cum, S0, S1, S2, S3, S4, S5, N.newborn, N.death, N.adult, tot.pop, gen0.pop, gen1.pop, gen2.pop, g0.adult, g1.adult, g2.adult, file=opt$output)
|