| 
33
 | 
     1 #!/usr/bin/env Rscript
 | 
| 
 | 
     2 
 | 
| 
 | 
     3 suppressPackageStartupMessages(library("optparse"))
 | 
| 
 | 
     4 
 | 
| 
 | 
     5 option_list <- list(
 | 
| 
 | 
     6     make_option(c("-a", "--adult_mort"), action="store", dest="adult_mort", type="integer", help="Adjustment rate for adult mortality"),
 | 
| 
 | 
     7     make_option(c("-b", "--adult_nymph_accum"), action="store", dest="adult_nymph_accum", type="integer", help="Adjustment of DD accumulation (old nymph->adult)"),
 | 
| 
 | 
     8     make_option(c("-c", "--egg_mort"), action="store", dest="egg_mort", type="integer", help="Adjustment rate for egg mortality"),
 | 
| 
 | 
     9     make_option(c("-d", "--latitude"), action="store", dest="latitude", type="double", help="Latitude of selected location"),
 | 
| 
 | 
    10     make_option(c("-e", "--location"), action="store", dest="location", help="Selected location"),
 | 
| 
 | 
    11     make_option(c("-f", "--min_clutch_size"), action="store", dest="min_clutch_size", type="integer", help="Adjustment of minimum clutch size"),
 | 
| 
 | 
    12     make_option(c("-g", "--max_clutch_size"), action="store", dest="max_clutch_size", type="integer", help="Adjustment of maximum clutch size"),
 | 
| 
 | 
    13     make_option(c("-j", "--nymph_mort"), action="store", dest="nymph_mort", type="integer", help="Adjustment rate for nymph mortality"),
 | 
| 
 | 
    14     make_option(c("-k", "--old_nymph_accum"), action="store", dest="old_nymph_accum", type="integer", help="Adjustment of DD accumulation (young nymph->old nymph)"),
 | 
| 
 | 
    15     make_option(c("-o", "--output"), action="store", dest="output", help="Output dataset"),
 | 
| 
 | 
    16     make_option(c("-p", "--oviposition"), action="store", dest="oviposition", type="integer", help="Adjustment for oviposition rate"),
 | 
| 
 | 
    17     make_option(c("-q", "--photoperiod"), action="store", dest="photoperiod", type="double", help="Critical photoperiod for diapause induction/termination"),
 | 
| 
 | 
    18     make_option(c("-s", "--replications"), action="store", dest="replications", type="integer", help="Number of replications"),
 | 
| 
 | 
    19     make_option(c("-t", "--se_plot"), action="store", dest="se_plot", help="Plot SE"),
 | 
| 
 | 
    20     make_option(c("-u", "--year"), action="store", dest="year", type="integer", help="Starting year"),
 | 
| 
 | 
    21     make_option(c("-v", "--temperature_dataset"), action="store", dest="temperature_dataset", help="Temperature data for selected location"),
 | 
| 
 | 
    22     make_option(c("-y", "--young_nymph_accum"), action="store", dest="young_nymph_accum", type="integer", help="Adjustment of DD accumulation (egg->young nymph)")
 | 
| 
 | 
    23 )
 | 
| 
 | 
    24 
 | 
| 
 | 
    25 parser <- OptionParser(usage="%prog [options] file", option_list=option_list)
 | 
| 
 | 
    26 args <- parse_args(parser, positional_arguments=TRUE)
 | 
| 
 | 
    27 opt <- args$options
 | 
| 
 | 
    28 
 | 
| 
 | 
    29 data.input=function(loc, start.yr, temperature.dataset)
 | 
| 
 | 
    30 {
 | 
| 
 | 
    31     expdata <- matrix(rep(0, 365 * 3), nrow=365)
 | 
| 
 | 
    32     # replace 2004 with start. yr
 | 
| 
 | 
    33     yr <- start.yr
 | 
| 
 | 
    34     namedat <- paste(loc,  yr, ".Rdat", sep="")
 | 
| 
 | 
    35     temp.data <- read.csv(file=temperature.dataset, header=T)
 | 
| 
 | 
    36 
 | 
| 
 | 
    37     expdata[,1] <- c(1:365)
 | 
| 
 | 
    38     save(expdata, file=namedat)
 | 
| 
 | 
    39     namedat
 | 
| 
 | 
    40 }
 | 
| 
 | 
    41 
 | 
| 
 | 
    42 daylength=function(L)
 | 
| 
 | 
    43 {
 | 
| 
 | 
    44     # from Forsythe 1995
 | 
| 
 | 
    45     p=0.8333
 | 
| 
 | 
    46     dl <- NULL
 | 
| 
 | 
    47     for (i in 1:365)
 | 
| 
 | 
    48     {
 | 
| 
 | 
    49         theta <- 0.2163108 + 2 * atan(0.9671396 * tan(0.00860 * (i - 186)))
 | 
| 
 | 
    50         phi <- asin(0.39795 * cos(theta))
 | 
| 
 | 
    51         dl[i] <- 24 - 24 / pi * acos((sin(p * pi / 180) + sin(L * pi / 180) * sin(phi)) / (cos(L * pi / 180) * cos(phi)))
 | 
| 
 | 
    52     }
 | 
| 
 | 
    53     dl   # return a vector of daylength in 365 days
 | 
| 
 | 
    54 }
 | 
| 
 | 
    55 
 | 
| 
 | 
    56 hourtemp=function(L, date, temperature_file_path)
 | 
| 
 | 
    57 {
 | 
| 
 | 
    58     load(temperature_file_path)
 | 
| 
 | 
    59     threshold <- 14.17  # base development threshold for BMSB
 | 
| 
 | 
    60     dnp <- expdata[date, 2]  # daily minimum
 | 
| 
 | 
    61     dxp <- expdata[date, 3]  # daily maximum
 | 
| 
 | 
    62     dmean <- 0.5 * (dnp + dxp)
 | 
| 
 | 
    63     dd <- 0  # initialize degree day accumulation
 | 
| 
 | 
    64 
 | 
| 
 | 
    65     if (dxp<threshold)
 | 
| 
 | 
    66     {
 | 
| 
 | 
    67         dd <- 0
 | 
| 
 | 
    68     }
 | 
| 
 | 
    69     else
 | 
| 
 | 
    70     {
 | 
| 
 | 
    71         dlprofile <- daylength(L)  # extract daylength data for entire year
 | 
| 
 | 
    72         T <- NULL  # initialize hourly temperature
 | 
| 
 | 
    73         dh <- NULL #initialize degree hour vector
 | 
| 
 | 
    74         # date <- 200
 | 
| 
 | 
    75         y <- dlprofile[date]  # calculate daylength in given date
 | 
| 
 | 
    76         z <- 24 - y     # night length
 | 
| 
 | 
    77         a <- 1.86     # lag coefficient
 | 
| 
 | 
    78         b <- 2.20     # night coefficient
 | 
| 
 | 
    79         #tempdata <- read.csv("tempdata.csv") #import raw data set
 | 
| 
 | 
    80         # Should be outside function otherwise its redundant
 | 
| 
 | 
    81         risetime <- 12 - y / 2      # sunrise time
 | 
| 
 | 
    82         settime <- 12 + y / 2       # sunset time
 | 
| 
 | 
    83         ts <- (dxp - dnp) * sin(pi * (settime - 5) / (y + 2 * a)) + dnp
 | 
| 
 | 
    84         for (i in 1:24)
 | 
| 
 | 
    85         {
 | 
| 
 | 
    86             if (i > risetime && i<settime)
 | 
| 
 | 
    87             {
 | 
| 
 | 
    88                 m <- i - 5  # number of hours after Tmin until sunset
 | 
| 
 | 
    89                 T[i]=(dxp - dnp) * sin(pi * m / (y + 2 * a)) + dnp
 | 
| 
 | 
    90                 if (T[i]<8.4)
 | 
| 
 | 
    91                 {
 | 
| 
 | 
    92                     dh[i] <- 0
 | 
| 
 | 
    93                 }
 | 
| 
 | 
    94                 else
 | 
| 
 | 
    95                 {
 | 
| 
 | 
    96                     dh[i] <- T[i] - 8.4
 | 
| 
 | 
    97                 }
 | 
| 
 | 
    98             }
 | 
| 
 | 
    99             else if (i > settime)
 | 
| 
 | 
   100             { 
 | 
| 
 | 
   101                 n <- i - settime
 | 
| 
 | 
   102                 T[i]=dnp + (ts - dnp) * exp( - b * n / z)
 | 
| 
 | 
   103                 if (T[i]<8.4)
 | 
| 
 | 
   104                 {
 | 
| 
 | 
   105                     dh[i] <- 0
 | 
| 
 | 
   106                 }
 | 
| 
 | 
   107                 else
 | 
| 
 | 
   108                 {
 | 
| 
 | 
   109                     dh[i] <- T[i] - 8.4
 | 
| 
 | 
   110                 }
 | 
| 
 | 
   111             }
 | 
| 
 | 
   112             else
 | 
| 
 | 
   113             {
 | 
| 
 | 
   114                 n <- i + 24 - settime
 | 
| 
 | 
   115                 T[i]=dnp + (ts - dnp) * exp( - b * n / z)
 | 
| 
 | 
   116                 if (T[i]<8.4)
 | 
| 
 | 
   117                 {
 | 
| 
 | 
   118                     dh[i] <- 0
 | 
| 
 | 
   119                 }
 | 
| 
 | 
   120                 else
 | 
| 
 | 
   121                 {
 | 
| 
 | 
   122                     dh[i] <- T[i] - 8.4
 | 
| 
 | 
   123                 }
 | 
| 
 | 
   124             }
 | 
| 
 | 
   125         }
 | 
| 
 | 
   126         dd <- sum(dh) / 24
 | 
| 
 | 
   127     }
 | 
| 
 | 
   128     return=c(dmean, dd)
 | 
| 
 | 
   129     return
 | 
| 
 | 
   130 }
 | 
| 
 | 
   131 
 | 
| 
 | 
   132 dev.egg = function(temperature)
 | 
| 
 | 
   133 {
 | 
| 
 | 
   134     dev.rate= -0.9843 * temperature + 33.438
 | 
| 
 | 
   135     return = dev.rate
 | 
| 
 | 
   136     return
 | 
| 
 | 
   137 }
 | 
| 
 | 
   138 
 | 
| 
 | 
   139 dev.young = function(temperature)
 | 
| 
 | 
   140 {
 | 
| 
 | 
   141     n12 <- -0.3728 * temperature + 14.68
 | 
| 
 | 
   142     n23 <- -0.6119 * temperature + 25.249
 | 
| 
 | 
   143     dev.rate = mean(n12 + n23)
 | 
| 
 | 
   144     return = dev.rate
 | 
| 
 | 
   145     return
 | 
| 
 | 
   146 }
 | 
| 
 | 
   147 
 | 
| 
 | 
   148 dev.old = function(temperature)
 | 
| 
 | 
   149 {
 | 
| 
 | 
   150     n34 <- -0.6119 * temperature + 17.602
 | 
| 
 | 
   151     n45 <- -0.4408 * temperature + 19.036
 | 
| 
 | 
   152     dev.rate = mean(n34 + n45)
 | 
| 
 | 
   153     return = dev.rate
 | 
| 
 | 
   154     return
 | 
| 
 | 
   155 }
 | 
| 
 | 
   156 
 | 
| 
 | 
   157 dev.emerg = function(temperature)
 | 
| 
 | 
   158 {
 | 
| 
 | 
   159     emerg.rate <- -0.5332 * temperature + 24.147
 | 
| 
 | 
   160     return=emerg.rate
 | 
| 
 | 
   161     return
 | 
| 
 | 
   162 }
 | 
| 
 | 
   163 
 | 
| 
 | 
   164 mortality.egg=function(temperature)
 | 
| 
 | 
   165 {
 | 
| 
 | 
   166     if (temperature<12.7)
 | 
| 
 | 
   167     {
 | 
| 
 | 
   168         mort.prob = 0.8
 | 
| 
 | 
   169     }
 | 
| 
 | 
   170     else 
 | 
| 
 | 
   171     {
 | 
| 
 | 
   172         mort.prob = 0.8 - temperature / 40.0
 | 
| 
 | 
   173         if (mort.prob<0)
 | 
| 
 | 
   174         {
 | 
| 
 | 
   175             mort.prob=0.01
 | 
| 
 | 
   176         }
 | 
| 
 | 
   177     }
 | 
| 
 | 
   178     return=mort.prob
 | 
| 
 | 
   179     return
 | 
| 
 | 
   180 }
 | 
| 
 | 
   181 
 | 
| 
 | 
   182 mortality.nymph=function(temperature)
 | 
| 
 | 
   183 {
 | 
| 
 | 
   184     if (temperature<12.7)
 | 
| 
 | 
   185     {
 | 
| 
 | 
   186         mort.prob=0.03
 | 
| 
 | 
   187     }
 | 
| 
 | 
   188     else 
 | 
| 
 | 
   189     {
 | 
| 
 | 
   190         mort.prob=temperature * 0.0008 + 0.03
 | 
| 
 | 
   191     }
 | 
| 
 | 
   192     return=mort.prob
 | 
| 
 | 
   193     return
 | 
| 
 | 
   194 }
 | 
| 
 | 
   195 
 | 
| 
 | 
   196 mortality.adult=function(temperature)
 | 
| 
 | 
   197 {
 | 
| 
 | 
   198     if (temperature<12.7)
 | 
| 
 | 
   199     {
 | 
| 
 | 
   200         mort.prob=0.002
 | 
| 
 | 
   201     }
 | 
| 
 | 
   202     else 
 | 
| 
 | 
   203     {
 | 
| 
 | 
   204         mort.prob=temperature * 0.0005 + 0.02
 | 
| 
 | 
   205     }
 | 
| 
 | 
   206     return=mort.prob
 | 
| 
 | 
   207     return
 | 
| 
 | 
   208 }
 | 
| 
 | 
   209 
 | 
| 
 | 
   210 # Read in the input temperature datafile
 | 
| 
 | 
   211 temperature_file_path <- data.input(opt$location, opt$year, opt$temperature_dataset)
 | 
| 
 | 
   212 
 | 
| 
 | 
   213 # Initialize matrix for results from all replications
 | 
| 
 | 
   214 S0.rep <- S1.rep <- S2.rep <- S3.rep <- S4.rep <- S5.rep <- matrix(rep(0, 365 * opt$replications), ncol = opt$replications)
 | 
| 
 | 
   215 newborn.rep <- death.rep <- adult.rep <- pop.rep <- g0.rep <- g1.rep <- g2.rep <- g0a.rep <- g1a.rep <- g2a.rep <- matrix(rep(0, 365 * opt$replications), ncol=opt$replications)
 | 
| 
 | 
   216 
 | 
| 
 | 
   217 # loop through replications
 | 
| 
 | 
   218 for (N.rep in 1:opt$replications)
 | 
| 
 | 
   219 {
 | 
| 
 | 
   220     # during each replication
 | 
| 
 | 
   221     # start with 1000 individuals -- user definable as well?
 | 
| 
 | 
   222     n <- 1000
 | 
| 
 | 
   223     # Generation, Stage, DD, T, Diapause
 | 
| 
 | 
   224     vec.ini <- c(0, 3, 0, 0, 0)
 | 
| 
 | 
   225     # overwintering, previttelogenic, DD=0, T=0, no-diapause
 | 
| 
 | 
   226     vec.mat <- rep(vec.ini, n)
 | 
| 
 | 
   227     # complete matrix for the population
 | 
| 
 | 
   228     vec.mat <- t(matrix(vec.mat, nrow=5))
 | 
| 
 | 
   229     # complete photoperiod profile in a year, requires daylength function
 | 
| 
 | 
   230     ph.p <- daylength(opt$latitude)
 | 
| 
 | 
   231 
 | 
| 
 | 
   232     # time series of population size
 | 
| 
 | 
   233     tot.pop <- NULL
 | 
| 
 | 
   234     # gen.0 pop size
 | 
| 
 | 
   235     gen0.pop <- rep(0, 365)
 | 
| 
 | 
   236     gen1.pop <- rep(0, 365)
 | 
| 
 | 
   237     gen2.pop <- rep(0, 365)
 | 
| 
 | 
   238     S0 <- S1 <- S2 <- S3 <- S4 <- S5 <- rep(0, 365)
 | 
| 
 | 
   239     g0.adult <- g1.adult <- g2.adult <- rep(0, 365)
 | 
| 
 | 
   240     N.newborn <- N.death <- N.adult <- rep(0, 365)
 | 
| 
 | 
   241     dd.day <- rep(0, 365)
 | 
| 
 | 
   242 
 | 
| 
 | 
   243     # start tick
 | 
| 
 | 
   244     ptm <- proc.time()
 | 
| 
 | 
   245 
 | 
| 
 | 
   246     # all the days
 | 
| 
 | 
   247     for (day in 1:365)
 | 
| 
 | 
   248     {
 | 
| 
 | 
   249         # photoperiod in the day
 | 
| 
 | 
   250         photoperiod <- ph.p[day]
 | 
| 
 | 
   251         temp.profile <- hourtemp(opt$latitude, day, temperature_file_path)
 | 
| 
 | 
   252         mean.temp <- temp.profile[1]
 | 
| 
 | 
   253         dd.temp <- temp.profile[2]
 | 
| 
 | 
   254         dd.day[day] <- dd.temp
 | 
| 
 | 
   255         # trash bin for death
 | 
| 
 | 
   256         death.vec <- NULL
 | 
| 
 | 
   257         # new born
 | 
| 
 | 
   258         birth.vec <- NULL
 | 
| 
 | 
   259 
 | 
| 
 | 
   260         # all individuals
 | 
| 
 | 
   261         for (i in 1:n)
 | 
| 
 | 
   262         {
 | 
| 
 | 
   263             # find individual record
 | 
| 
 | 
   264             vec.ind <- vec.mat[i,]
 | 
| 
 | 
   265             # first of all, still alive?  
 | 
| 
 | 
   266             # adjustment for late season mortality rate
 | 
| 
 | 
   267             if (opt$latitude < 40.0)
 | 
| 
 | 
   268             {
 | 
| 
 | 
   269                 post.mort <- 1
 | 
| 
 | 
   270                 day.kill <- 300
 | 
| 
 | 
   271             }
 | 
| 
 | 
   272             else
 | 
| 
 | 
   273             {
 | 
| 
 | 
   274                 post.mort <- 2
 | 
| 
 | 
   275                 day.kill <- 250
 | 
| 
 | 
   276             }
 | 
| 
 | 
   277             if (vec.ind[2] == 0)
 | 
| 
 | 
   278             {
 | 
| 
 | 
   279                 # egg
 | 
| 
 | 
   280                 death.prob = opt$egg_mort * mortality.egg(mean.temp)
 | 
| 
 | 
   281             }
 | 
| 
 | 
   282             else if (vec.ind[2] == 1 | vec.ind[2] == 2)
 | 
| 
 | 
   283             {
 | 
| 
 | 
   284                 death.prob = opt$nymph_mort * mortality.nymph(mean.temp)
 | 
| 
 | 
   285             }
 | 
| 
 | 
   286             else if (vec.ind[2] == 3 | vec.ind[2] == 4 | vec.ind[2] == 5)
 | 
| 
 | 
   287             {
 | 
| 
 | 
   288                 # for adult
 | 
| 
 | 
   289                 if (day < day.kill)
 | 
| 
 | 
   290                 {
 | 
| 
 | 
   291                     death.prob = opt$adult_mort * mortality.adult(mean.temp)
 | 
| 
 | 
   292                 }
 | 
| 
 | 
   293                 else
 | 
| 
 | 
   294                 {
 | 
| 
 | 
   295                     # increase adult mortality after fall equinox
 | 
| 
 | 
   296                     death.prob = opt$adult_mort * post.mort * mortality.adult(mean.temp)
 | 
| 
 | 
   297                 }
 | 
| 
 | 
   298             }
 | 
| 
 | 
   299             # (or dependent on temperature and life stage?)
 | 
| 
 | 
   300             u.d <- runif(1)
 | 
| 
 | 
   301             if (u.d < death.prob)
 | 
| 
 | 
   302             {
 | 
| 
 | 
   303                 death.vec <- c(death.vec, i)
 | 
| 
 | 
   304             } 
 | 
| 
 | 
   305             else
 | 
| 
 | 
   306             {
 | 
| 
 | 
   307                 # aggregrate index of dead bug
 | 
| 
 | 
   308                 # event 1 end of diapause
 | 
| 
 | 
   309                 if (vec.ind[1] == 0 && vec.ind[2] == 3)
 | 
| 
 | 
   310                 {
 | 
| 
 | 
   311                     # overwintering adult (previttelogenic)
 | 
| 
 | 
   312                     if (photoperiod > opt$photoperiod && vec.ind[3] > 68 && day < 180)
 | 
| 
 | 
   313                     {
 | 
| 
 | 
   314                         # add 68C to become fully reproductively matured
 | 
| 
 | 
   315                         # transfer to vittelogenic
 | 
| 
 | 
   316                         vec.ind <- c(0, 4, 0, 0, 0)
 | 
| 
 | 
   317                         vec.mat[i,] <- vec.ind
 | 
| 
 | 
   318                     }
 | 
| 
 | 
   319                     else
 | 
| 
 | 
   320                     {
 | 
| 
 | 
   321                         # add to DD
 | 
| 
 | 
   322                         vec.ind[3] <- vec.ind[3] + dd.temp
 | 
| 
 | 
   323                         # add 1 day in current stage
 | 
| 
 | 
   324                         vec.ind[4] <- vec.ind[4] + 1
 | 
| 
 | 
   325                         vec.mat[i,] <- vec.ind
 | 
| 
 | 
   326                     }
 | 
| 
 | 
   327                 }
 | 
| 
 | 
   328                 if (vec.ind[1] != 0 && vec.ind[2] == 3)
 | 
| 
 | 
   329                 {
 | 
| 
 | 
   330                     # NOT overwintering adult (previttelogenic)
 | 
| 
 | 
   331                     current.gen <- vec.ind[1]
 | 
| 
 | 
   332                     if (vec.ind[3] > 68)
 | 
| 
 | 
   333                     {
 | 
| 
 | 
   334                         # add 68C to become fully reproductively matured
 | 
| 
 | 
   335                         # transfer to vittelogenic
 | 
| 
 | 
   336                         vec.ind <- c(current.gen, 4, 0, 0, 0)
 | 
| 
 | 
   337                         vec.mat[i,] <- vec.ind
 | 
| 
 | 
   338                     }
 | 
| 
 | 
   339                     else
 | 
| 
 | 
   340                     {
 | 
| 
 | 
   341                         # add to DD
 | 
| 
 | 
   342                         vec.ind[3] <- vec.ind[3] + dd.temp
 | 
| 
 | 
   343                         # add 1 day in current stage
 | 
| 
 | 
   344                         vec.ind[4] <- vec.ind[4] + 1
 | 
| 
 | 
   345                         vec.mat[i,] <- vec.ind
 | 
| 
 | 
   346                     }
 | 
| 
 | 
   347                 }
 | 
| 
 | 
   348 
 | 
| 
 | 
   349                 # event 2 oviposition -- where population dynamics comes from
 | 
| 
 | 
   350                 if (vec.ind[2] == 4 && vec.ind[1] == 0 && mean.temp > 10)
 | 
| 
 | 
   351                 {
 | 
| 
 | 
   352                     # vittelogenic stage, overwintering generation
 | 
| 
 | 
   353                     if (vec.ind[4] == 0)
 | 
| 
 | 
   354                     {
 | 
| 
 | 
   355                         # just turned in vittelogenic stage
 | 
| 
 | 
   356                         n.birth=round(runif(1, 2 + min.ovi.adj, 8 + max.ovi.adj))
 | 
| 
 | 
   357                     }
 | 
| 
 | 
   358                     else
 | 
| 
 | 
   359                     {
 | 
| 
 | 
   360                         # daily probability of birth
 | 
| 
 | 
   361                         p.birth = opt$oviposition * 0.01
 | 
| 
 | 
   362                         u1 <- runif(1)
 | 
| 
 | 
   363                         if (u1 < p.birth)
 | 
| 
 | 
   364                         {
 | 
| 
 | 
   365                             n.birth=round(runif(1, 2, 8))
 | 
| 
 | 
   366                         }
 | 
| 
 | 
   367                     }
 | 
| 
 | 
   368                     # add to DD
 | 
| 
 | 
   369                     vec.ind[3] <- vec.ind[3] + dd.temp
 | 
| 
 | 
   370                     # add 1 day in current stage
 | 
| 
 | 
   371                     vec.ind[4] <- vec.ind[4] + 1
 | 
| 
 | 
   372                     vec.mat[i,] <- vec.ind
 | 
| 
 | 
   373                     if (n.birth > 0)
 | 
| 
 | 
   374                     {
 | 
| 
 | 
   375                         # add new birth -- might be in different generations
 | 
| 
 | 
   376                         # generation + 1
 | 
| 
 | 
   377                         new.gen <- vec.ind[1] + 1
 | 
| 
 | 
   378                         # egg profile
 | 
| 
 | 
   379                         new.ind <- c(new.gen, 0, 0, 0, 0)
 | 
| 
 | 
   380                         new.vec <- rep(new.ind, n.birth)
 | 
| 
 | 
   381                         # update batch of egg profile
 | 
| 
 | 
   382                         new.vec <- t(matrix(new.vec, nrow=5))
 | 
| 
 | 
   383                         # group with total eggs laid in that day
 | 
| 
 | 
   384                         birth.vec <- rbind(birth.vec, new.vec)
 | 
| 
 | 
   385                     }
 | 
| 
 | 
   386                 }
 | 
| 
 | 
   387 
 | 
| 
 | 
   388                 # event 2 oviposition -- for gen 1.
 | 
| 
 | 
   389                 if (vec.ind[2] == 4 && vec.ind[1] == 1 && mean.temp > 12.5 && day < 222)
 | 
| 
 | 
   390                 {
 | 
| 
 | 
   391                     # vittelogenic stage, 1st generation
 | 
| 
 | 
   392                     if (vec.ind[4] == 0)
 | 
| 
 | 
   393                     {
 | 
| 
 | 
   394                         # just turned in vittelogenic stage
 | 
| 
 | 
   395                         n.birth=round(runif(1, 2 + min.ovi.adj, 8 + max.ovi.adj))
 | 
| 
 | 
   396                     }
 | 
| 
 | 
   397                     else
 | 
| 
 | 
   398                     {
 | 
| 
 | 
   399                         # daily probability of birth
 | 
| 
 | 
   400                         p.birth = opt$oviposition * 0.01
 | 
| 
 | 
   401                         u1 <- runif(1)
 | 
| 
 | 
   402                         if (u1 < p.birth)
 | 
| 
 | 
   403                         {
 | 
| 
 | 
   404                             n.birth = round(runif(1, 2, 8))
 | 
| 
 | 
   405                         }
 | 
| 
 | 
   406                     }
 | 
| 
 | 
   407                     # add to DD
 | 
| 
 | 
   408                     vec.ind[3] <- vec.ind[3] + dd.temp
 | 
| 
 | 
   409                     # add 1 day in current stage
 | 
| 
 | 
   410                     vec.ind[4] <- vec.ind[4] + 1
 | 
| 
 | 
   411                     vec.mat[i,] <- vec.ind
 | 
| 
 | 
   412                     if (n.birth > 0)
 | 
| 
 | 
   413                     {
 | 
| 
 | 
   414                         # add new birth -- might be in different generations
 | 
| 
 | 
   415                         # generation + 1
 | 
| 
 | 
   416                         new.gen <- vec.ind[1] + 1
 | 
| 
 | 
   417                         # egg profile
 | 
| 
 | 
   418                         new.ind <- c(new.gen, 0, 0, 0, 0)
 | 
| 
 | 
   419                         new.vec <- rep(new.ind, n.birth)
 | 
| 
 | 
   420                         # update batch of egg profile
 | 
| 
 | 
   421                         new.vec <- t(matrix(new.vec, nrow=5))
 | 
| 
 | 
   422                         # group with total eggs laid in that day
 | 
| 
 | 
   423                         birth.vec <- rbind(birth.vec, new.vec)
 | 
| 
 | 
   424                     }
 | 
| 
 | 
   425                 }
 | 
| 
 | 
   426 
 | 
| 
 | 
   427                 # event 3 development (with diapause determination)
 | 
| 
 | 
   428                 # event 3.1 egg development to young nymph (vec.ind[2]=0 -> egg)
 | 
| 
 | 
   429                 if (vec.ind[2] == 0)
 | 
| 
 | 
   430                 {
 | 
| 
 | 
   431                     # egg stage
 | 
| 
 | 
   432                     # add to DD
 | 
| 
 | 
   433                     vec.ind[3] <- vec.ind[3] + dd.temp
 | 
| 
 | 
   434                     if (vec.ind[3] >= (68 + dd.adj1))
 | 
| 
 | 
   435                     {
 | 
| 
 | 
   436                         # from egg to young nymph, DD requirement met
 | 
| 
 | 
   437                         current.gen <- vec.ind[1]
 | 
| 
 | 
   438                         # transfer to young nym stage
 | 
| 
 | 
   439                         vec.ind <- c(current.gen, 1, 0, 0, 0)
 | 
| 
 | 
   440                     }
 | 
| 
 | 
   441                     else
 | 
| 
 | 
   442                     {
 | 
| 
 | 
   443                         # add 1 day in current stage
 | 
| 
 | 
   444                         vec.ind[4] <- vec.ind[4] + 1
 | 
| 
 | 
   445                     }
 | 
| 
 | 
   446                     vec.mat[i,] <- vec.ind
 | 
| 
 | 
   447                 }
 | 
| 
 | 
   448 
 | 
| 
 | 
   449                 # event 3.2 young nymph to old nymph (vec.ind[2]=1 -> young nymph: determines diapause)
 | 
| 
 | 
   450                 if (vec.ind[2] == 1)
 | 
| 
 | 
   451                 {
 | 
| 
 | 
   452                     # young nymph stage
 | 
| 
 | 
   453                     # add to DD
 | 
| 
 | 
   454                     vec.ind[3] <- vec.ind[3] + dd.temp
 | 
| 
 | 
   455                     if (vec.ind[3] >= (250 +dd.adj2))
 | 
| 
 | 
   456                     {
 | 
| 
 | 
   457                         # from young to old nymph, DD requirement met
 | 
| 
 | 
   458                         current.gen <- vec.ind[1]
 | 
| 
 | 
   459                         # transfer to old nym stage
 | 
| 
 | 
   460                         vec.ind <- c(current.gen, 2, 0, 0, 0)
 | 
| 
 | 
   461                         if (photoperiod < opt$photoperiod && day > 180)
 | 
| 
 | 
   462                         {
 | 
| 
 | 
   463                             vec.ind[5] <- 1
 | 
| 
 | 
   464                         } # prepare for diapausing
 | 
| 
 | 
   465                     }
 | 
| 
 | 
   466                     else
 | 
| 
 | 
   467                     {
 | 
| 
 | 
   468                         # add 1 day in current stage
 | 
| 
 | 
   469                         vec.ind[4] <- vec.ind[4] + 1
 | 
| 
 | 
   470                     }
 | 
| 
 | 
   471                     vec.mat[i,] <- vec.ind
 | 
| 
 | 
   472                 }  
 | 
| 
 | 
   473 
 | 
| 
 | 
   474                 # event 3.3 old nymph to adult: previttelogenic or diapausing?
 | 
| 
 | 
   475                 if (vec.ind[2] == 2)
 | 
| 
 | 
   476                 {
 | 
| 
 | 
   477                     # old nymph stage
 | 
| 
 | 
   478                     # add to DD
 | 
| 
 | 
   479                     vec.ind[3] <- vec.ind[3] + dd.temp
 | 
| 
 | 
   480                     if (vec.ind[3] >= (200 + dd.adj3))
 | 
| 
 | 
   481                     {
 | 
| 
 | 
   482                         # from old to adult, DD requirement met
 | 
| 
 | 
   483                         current.gen <- vec.ind[1]
 | 
| 
 | 
   484                         if (vec.ind[5] == 0)
 | 
| 
 | 
   485                         {
 | 
| 
 | 
   486                             # non-diapausing adult -- previttelogenic
 | 
| 
 | 
   487                             vec.ind <- c(current.gen, 3, 0, 0, 0)
 | 
| 
 | 
   488                         }
 | 
| 
 | 
   489                         else
 | 
| 
 | 
   490                         {
 | 
| 
 | 
   491                             # diapausing 
 | 
| 
 | 
   492                             vec.ind <- c(current.gen, 5, 0, 0, 1)
 | 
| 
 | 
   493                         }
 | 
| 
 | 
   494                     }
 | 
| 
 | 
   495                     else
 | 
| 
 | 
   496                     {
 | 
| 
 | 
   497                         # add 1 day in current stage
 | 
| 
 | 
   498                         vec.ind[4] <- vec.ind[4] + 1
 | 
| 
 | 
   499                     }
 | 
| 
 | 
   500                     vec.mat[i,] <- vec.ind
 | 
| 
 | 
   501                 }
 | 
| 
 | 
   502 
 | 
| 
 | 
   503                 # event 4 growing of diapausing adult (unimportant, but still necessary)## 
 | 
| 
 | 
   504                 if (vec.ind[2] == 5)
 | 
| 
 | 
   505                 {
 | 
| 
 | 
   506                     vec.ind[3] <- vec.ind[3] + dd.temp
 | 
| 
 | 
   507                     vec.ind[4] <- vec.ind[4] + 1
 | 
| 
 | 
   508                     vec.mat[i,] <- vec.ind
 | 
| 
 | 
   509                 }
 | 
| 
 | 
   510             } # else if it is still alive
 | 
| 
 | 
   511         } # end of the individual bug loop
 | 
| 
 | 
   512 
 | 
| 
 | 
   513         # find how many died
 | 
| 
 | 
   514         n.death <- length(death.vec)
 | 
| 
 | 
   515         if (n.death > 0)
 | 
| 
 | 
   516         {
 | 
| 
 | 
   517             vec.mat <- vec.mat[-death.vec, ]
 | 
| 
 | 
   518         }
 | 
| 
 | 
   519         # remove record of dead
 | 
| 
 | 
   520         # find how many new born  
 | 
| 
 | 
   521         n.newborn <- length(birth.vec[,1])
 | 
| 
 | 
   522         vec.mat <- rbind(vec.mat, birth.vec)
 | 
| 
 | 
   523         # update population size for the next day
 | 
| 
 | 
   524         n <- n - n.death + n.newborn 
 | 
| 
 | 
   525 
 | 
| 
 | 
   526         # aggregate results by day
 | 
| 
 | 
   527         tot.pop <- c(tot.pop, n) 
 | 
| 
 | 
   528         # egg
 | 
| 
 | 
   529         s0 <- sum(vec.mat[,2] == 0)
 | 
| 
 | 
   530         # young nymph
 | 
| 
 | 
   531         s1 <- sum(vec.mat[,2] == 1)
 | 
| 
 | 
   532         # old nymph
 | 
| 
 | 
   533         s2 <- sum(vec.mat[,2] == 2)
 | 
| 
 | 
   534         # previtellogenic
 | 
| 
 | 
   535         s3 <- sum(vec.mat[,2] == 3)
 | 
| 
 | 
   536         # vitellogenic
 | 
| 
 | 
   537         s4 <- sum(vec.mat[,2] == 4)
 | 
| 
 | 
   538         # diapausing
 | 
| 
 | 
   539         s5 <- sum(vec.mat[,2] == 5)
 | 
| 
 | 
   540         # overwintering adult
 | 
| 
 | 
   541         gen0 <- sum(vec.mat[,1] == 0)
 | 
| 
 | 
   542         # first generation
 | 
| 
 | 
   543         gen1 <- sum(vec.mat[,1] == 1)
 | 
| 
 | 
   544         # second generation
 | 
| 
 | 
   545         gen2 <- sum(vec.mat[,1] == 2)
 | 
| 
 | 
   546         # sum of all adults
 | 
| 
 | 
   547         n.adult <- sum(vec.mat[,2] == 3) + sum(vec.mat[,2] == 4) + sum(vec.mat[,2] == 5)
 | 
| 
 | 
   548         # gen.0 pop size
 | 
| 
 | 
   549         gen0.pop[day] <- gen0
 | 
| 
 | 
   550         gen1.pop[day] <- gen1
 | 
| 
 | 
   551         gen2.pop[day] <- gen2
 | 
| 
 | 
   552         S0[day] <- s0
 | 
| 
 | 
   553         S1[day] <- s1
 | 
| 
 | 
   554         S2[day] <- s2
 | 
| 
 | 
   555         S3[day] <- s3
 | 
| 
 | 
   556         S4[day] <- s4
 | 
| 
 | 
   557         S5[day] <- s5
 | 
| 
 | 
   558         g0.adult[day] <- sum(vec.mat[,1] == 0)
 | 
| 
 | 
   559         g1.adult[day] <- sum((vec.mat[,1] == 1 & vec.mat[,2] == 3) | (vec.mat[,1] == 1 & vec.mat[,2] == 4) | (vec.mat[,1] == 1 & vec.mat[,2] == 5))
 | 
| 
 | 
   560         g2.adult[day] <- sum((vec.mat[,1]== 2 & vec.mat[,2] == 3) | (vec.mat[,1] == 2 & vec.mat[,2] == 4) | (vec.mat[,1] == 2 & vec.mat[,2] == 5))
 | 
| 
 | 
   561 
 | 
| 
 | 
   562         N.newborn[day] <- n.newborn
 | 
| 
 | 
   563         N.death[day] <- n.death
 | 
| 
 | 
   564         N.adult[day] <- n.adult
 | 
| 
 | 
   565         #print(c(N.rep, day, n, n.adult))
 | 
| 
 | 
   566     }   # end of 365 days
 | 
| 
 | 
   567 
 | 
| 
 | 
   568     dd.cum <- cumsum(dd.day)
 | 
| 
 | 
   569     # collect all the outputs
 | 
| 
 | 
   570     S0.rep[,N.rep] <- S0
 | 
| 
 | 
   571     S1.rep[,N.rep] <- S1
 | 
| 
 | 
   572     S2.rep[,N.rep] <- S2
 | 
| 
 | 
   573     S3.rep[,N.rep] <- S3
 | 
| 
 | 
   574     S4.rep[,N.rep] <- S4
 | 
| 
 | 
   575     S5.rep[,N.rep] <- S5
 | 
| 
 | 
   576     newborn.rep[,N.rep] <- N.newborn
 | 
| 
 | 
   577     death.rep[,N.rep] <- N.death
 | 
| 
 | 
   578     adult.rep[,N.rep] <- N.adult
 | 
| 
 | 
   579     pop.rep[,N.rep] <- tot.pop
 | 
| 
 | 
   580     g0.rep[,N.rep] <- gen0.pop
 | 
| 
 | 
   581     g1.rep[,N.rep] <- gen1.pop
 | 
| 
 | 
   582     g2.rep[,N.rep] <- gen2.pop
 | 
| 
 | 
   583     g0a.rep[,N.rep] <- g0.adult
 | 
| 
 | 
   584     g1a.rep[,N.rep] <- g1.adult
 | 
| 
 | 
   585     g2a.rep[,N.rep] <- g2.adult
 | 
| 
 | 
   586 }
 | 
| 
 | 
   587 
 | 
| 
 | 
   588 # save(dd.day, dd.cum, S0.rep, S1.rep, S2.rep, S3.rep, S4.rep, S5.rep, newborn.rep, death.rep, adult.rep, pop.rep, g0.rep, g1.rep, g2.rep, g0a.rep, g1a.rep, g2a.rep, file=opt$output)
 | 
| 
 | 
   589 # maybe do not need to export this bit, but for now just leave it as-is
 | 
| 
 | 
   590 # do we need to export this Rdat file? 
 | 
| 
 | 
   591 
 | 
| 
 | 
   592 # Data analysis and visualization
 | 
| 
 | 
   593 # default: plot 1 year of result
 | 
| 
 | 
   594 # but can be expanded to accommodate multiple years
 | 
| 
 | 
   595 n.yr <- 1
 | 
| 
 | 
   596 day.all <- c(1:365 * n.yr)
 | 
| 
 | 
   597 
 | 
| 
 | 
   598 # mean value for adults
 | 
| 
 | 
   599 sa <- apply((S3.rep + S4.rep + S5.rep), 1, mean)
 | 
| 
 | 
   600 # mean value for nymphs
 | 
| 
 | 
   601 sn <- apply((S1.rep + S2.rep), 1,mean)
 | 
| 
 | 
   602 # mean value for eggs
 | 
| 
 | 
   603 se <- apply(S0.rep, 1, mean)
 | 
| 
 | 
   604 # mean value for P
 | 
| 
 | 
   605 g0 <- apply(g0.rep, 1, mean)
 | 
| 
 | 
   606 # mean value for F1
 | 
| 
 | 
   607 g1 <- apply(g1.rep, 1, mean)
 | 
| 
 | 
   608 # mean value for F2
 | 
| 
 | 
   609 g2 <- apply(g2.rep, 1, mean)
 | 
| 
 | 
   610 # mean value for P adult
 | 
| 
 | 
   611 g0a <- apply(g0a.rep, 1, mean)
 | 
| 
 | 
   612 # mean value for F1 adult
 | 
| 
 | 
   613 g1a <- apply(g1a.rep, 1, mean)
 | 
| 
 | 
   614 # mean value for F2 adult
 | 
| 
 | 
   615 g2a <- apply(g2a.rep, 1, mean)
 | 
| 
 | 
   616 
 | 
| 
 | 
   617 # SE for adults
 | 
| 
 | 
   618 sa.se <- apply((S3.rep + S4.rep + S5.rep), 1, sd) / sqrt(opt$replications)
 | 
| 
 | 
   619 # SE for nymphs
 | 
| 
 | 
   620 sn.se <- apply((S1.rep + S2.rep) / sqrt(opt$replications), 1, sd)
 | 
| 
 | 
   621 # SE for eggs
 | 
| 
 | 
   622 se.se <- apply(S0.rep ,1 ,sd) / sqrt(opt$replications)
 | 
| 
 | 
   623 # SE value for P
 | 
| 
 | 
   624 g0.se <- apply(g0.rep, 1, sd) / sqrt(opt$replications)
 | 
| 
 | 
   625 # SE for F1
 | 
| 
 | 
   626 g1.se <- apply(g1.rep, 1, sd) / sqrt(opt$replications)
 | 
| 
 | 
   627 # SE for F2
 | 
| 
 | 
   628 g2.se <- apply(g2.rep, 1, sd) / sqrt(opt$replications)
 | 
| 
 | 
   629 # SE for P adult
 | 
| 
 | 
   630 g0a.se <- apply(g0a.rep, 1, sd) / sqrt(opt$replications)
 | 
| 
 | 
   631 # SE for F1 adult
 | 
| 
 | 
   632 g1a.se <- apply(g1a.rep, 1, sd) / sqrt(opt$replications)
 | 
| 
 | 
   633 # SE for F2 adult
 | 
| 
 | 
   634 g2a.se <- apply(g2a.rep, 1, sd) / sqrt(opt$replications)
 | 
| 
 | 
   635 
 | 
| 
 | 
   636 dev.new(width = 9, height = 9)
 | 
| 
 | 
   637 
 | 
| 
 | 
   638 # Start PDF device driver to save charts to output.
 | 
| 
 | 
   639 pdf(file=opt$output, height=20, width=20, bg="white")
 | 
| 
 | 
   640 
 | 
| 
 | 
   641 par(mar = c(5, 6, 4, 4), mfrow=c(3, 1))
 | 
| 
 | 
   642 
 | 
| 
 | 
   643 # Subfigure 2: population size by life stage
 | 
| 
 | 
   644 plot(day.all, sa, main = "Total Population Size by Life Stage", type = "l", ylim = c(0, max(se + se.se, sn + sn.se, sa + sa.se)), axes = F, lwd = 2, xlab = "", ylab = "Number", cex = 2, cex.lab = 2, cex.axis = 2, cex.main = 2)
 | 
| 
 | 
   645 # Young and old nymphs
 | 
| 
 | 
   646 lines(day.all, sn, lwd = 2, lty = 1, col = 2)
 | 
| 
 | 
   647 # Eggs
 | 
| 
 | 
   648 lines(day.all, se, lwd = 2, lty = 1, col = 4)
 | 
| 
 | 
   649 axis(1, at = c(1:12) * 30 - 15, cex.axis = 2, labels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))
 | 
| 
 | 
   650 axis(2, cex.axis = 2)
 | 
| 
 | 
   651 leg.text <- c("Egg", "Nymph", "Adult")
 | 
| 
 | 
   652 legend("topleft", leg.text, lty = c(1, 1, 1), col = c(4, 2, 1), cex = 2)
 | 
| 
 | 
   653 if (opt$se_plot == 1)
 | 
| 
 | 
   654 {
 | 
| 
 | 
   655     # add SE lines to plot
 | 
| 
 | 
   656     # SE for adults
 | 
| 
 | 
   657     lines (day.all, sa + sa.se, lty = 2)
 | 
| 
 | 
   658     lines (day.all, sa - sa.se, lty = 2) 
 | 
| 
 | 
   659     # SE for nymphs
 | 
| 
 | 
   660     lines (day.all, sn + sn.se, col = 2, lty = 2)
 | 
| 
 | 
   661     lines (day.all, sn - sn.se, col = 2, lty = 2) 
 | 
| 
 | 
   662     # SE for eggs
 | 
| 
 | 
   663     lines (day.all, se + se.se, col = 4, lty = 2)
 | 
| 
 | 
   664     lines (day.all, se - se.se, col = 4, lty = 2) 
 | 
| 
 | 
   665 }
 | 
| 
 | 
   666 
 | 
| 
 | 
   667 # Subfigure 3: population size by generation
 | 
| 
 | 
   668 plot(day.all, g0, main = "Total Population Size by Generation", type = "l", ylim = c(0, max(g2)), axes = F, lwd = 2, xlab = "", ylab = "Number", cex = 2, cex.lab = 2, cex.axis = 2, cex.main = 2)
 | 
| 
 | 
   669 lines(day.all, g1, lwd = 2, lty = 1, col = 2)
 | 
| 
 | 
   670 lines(day.all, g2, lwd = 2, lty = 1, col = 4)
 | 
| 
 | 
   671 axis(1, at = c(1:12) * 30 - 15, cex.axis = 2, labels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))
 | 
| 
 | 
   672 axis(2, cex.axis = 2)
 | 
| 
 | 
   673 leg.text <- c("P", "F1", "F2")
 | 
| 
 | 
   674 legend("topleft", leg.text, lty = c(1, 1, 1), col =c(1, 2, 4), cex = 2)
 | 
| 
 | 
   675 if (opt$se_plot == 1)
 | 
| 
 | 
   676 {
 | 
| 
 | 
   677     # add SE lines to plot
 | 
| 
 | 
   678     # SE for adults
 | 
| 
 | 
   679     lines (day.all, g0 + g0.se, lty = 2)
 | 
| 
 | 
   680     lines (day.all, g0 - g0.se, lty = 2) 
 | 
| 
 | 
   681     # SE for nymphs
 | 
| 
 | 
   682     lines (day.all, g1 + g1.se, col = 2, lty = 2)
 | 
| 
 | 
   683     lines (day.all, g1 - g1.se, col = 2, lty = 2) 
 | 
| 
 | 
   684     # SE for eggs
 | 
| 
 | 
   685     lines (day.all, g2 + g2.se, col = 4, lty = 2)
 | 
| 
 | 
   686     lines (day.all, g2 - g2.se, col = 4, lty = 2) 
 | 
| 
 | 
   687 }
 | 
| 
 | 
   688 
 | 
| 
 | 
   689 # Subfigure 4: adult population size by generation
 | 
| 
 | 
   690 plot(day.all, g0a, ylim = c(0, max(g2a) + 100), main = "Adult Population Size by Generation", type = "l", axes = F, lwd = 2, xlab = "Year", ylab = "Number", cex = 2, cex.lab = 2, cex.axis = 2, cex.main = 2)
 | 
| 
 | 
   691 lines(day.all, g1a, lwd = 2, lty = 1, col = 2)
 | 
| 
 | 
   692 lines(day.all, g2a, lwd = 2, lty = 1, col = 4)
 | 
| 
 | 
   693 axis(1, at = c(1:12) * 30 - 15, cex.axis = 2, labels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))
 | 
| 
 | 
   694 axis(2, cex.axis = 2)
 | 
| 
 | 
   695 leg.text <- c("P", "F1", "F2")
 | 
| 
 | 
   696 legend("topleft", leg.text, lty = c(1, 1, 1), col = c(1, 2, 4), cex = 2)
 | 
| 
 | 
   697 if (opt$se_plot == 1)
 | 
| 
 | 
   698 {
 | 
| 
 | 
   699     # add SE lines to plot
 | 
| 
 | 
   700     # SE for adults
 | 
| 
 | 
   701     lines (day.all, g0a + g0a.se, lty = 2)
 | 
| 
 | 
   702     lines (day.all, g0a - g0a.se, lty = 2) 
 | 
| 
 | 
   703     # SE for nymphs
 | 
| 
 | 
   704     lines (day.all, g1a + g1a.se, col = 2, lty = 2)
 | 
| 
 | 
   705     lines (day.all, g1a - g1a.se, col = 2, lty = 2) 
 | 
| 
 | 
   706     # SE for eggs
 | 
| 
 | 
   707     lines (day.all, g2a + g2a.se, col = 4, lty = 2)
 | 
| 
 | 
   708     lines (day.all, g2a - g2a.se, col = 4, lty = 2) 
 | 
| 
 | 
   709 }
 | 
| 
 | 
   710 
 | 
| 
 | 
   711 # Turn off device driver to flush output.
 | 
| 
 | 
   712 dev.off()
 |