Mercurial > repos > galaxyp > pep_pointer
comparison pep_pointer.py @ 0:aac535d694d4 draft
planemo upload for repository https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/pep_pointer commit e7dfd98a4e987360d0fd42e6fa2ed23f0f9958ec
| author | galaxyp |
|---|---|
| date | Thu, 28 Dec 2017 17:27:05 -0500 |
| parents | |
| children | a26f551d819b |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:aac535d694d4 |
|---|---|
| 1 | |
| 2 # | |
| 3 # Author: Praveen Kumar | |
| 4 # Updated: Nov 8th, 2017 | |
| 5 # | |
| 6 # | |
| 7 # | |
| 8 | |
| 9 import re | |
| 10 | |
| 11 | |
| 12 def main(): | |
| 13 import sys | |
| 14 if len(sys.argv) == 4: | |
| 15 inputFile = sys.argv | |
| 16 infh = open(inputFile[1], "r") | |
| 17 # infh = open("Mus_musculus.GRCm38.90.chr.gtf", "r") | |
| 18 | |
| 19 gtf = {} | |
| 20 gtf_transcript = {} | |
| 21 gtf_gene = {} | |
| 22 for each in infh.readlines(): | |
| 23 a = each.split("\t") | |
| 24 if re.search("^[^#]", each): | |
| 25 if re.search("gene_biotype \"protein_coding\"", a[8]) and int(a[4].strip()) != int(a[3].strip()): | |
| 26 type = a[2].strip() | |
| 27 if type == "gene" or type == "exon" or type == "CDS" or type == "five_prime_utr" or type == "three_prime_utr": | |
| 28 chr = "chr" + a[0].strip() | |
| 29 strand = a[6].strip() | |
| 30 if strand == "+": | |
| 31 start = a[3].strip() | |
| 32 end = a[4].strip() | |
| 33 elif strand == "-": | |
| 34 if int(a[4].strip()) > int(a[3].strip()): | |
| 35 start = a[3].strip() | |
| 36 end = a[4].strip() | |
| 37 elif int(a[4].strip()) < int(a[3].strip()): | |
| 38 start = a[4].strip() | |
| 39 end = a[3].strip() | |
| 40 else: | |
| 41 print "Something fishy in start end coordinates" | |
| 42 else: | |
| 43 print "Something fishy in reading" | |
| 44 if not gtf.has_key(strand): | |
| 45 gtf[strand] = {} | |
| 46 if not gtf[strand].has_key(type): | |
| 47 gtf[strand][type] = [] | |
| 48 b = re.search("gene_id \"(.+?)\";", a[8].strip()) | |
| 49 gene = b.group(1) | |
| 50 if type == "gene": | |
| 51 transcript = "" | |
| 52 else: | |
| 53 b = re.search("transcript_id \"(.+?)\";", a[8].strip()) | |
| 54 transcript = b.group(1) | |
| 55 data = (chr, start, end, gene, transcript, strand, type) | |
| 56 gtf[strand][type].append(data) | |
| 57 | |
| 58 if type == "exon": | |
| 59 if gtf_transcript.has_key(chr+"#"+strand): | |
| 60 if gtf_transcript[chr+"#"+strand].has_key(transcript+"#"+gene): | |
| 61 gtf_transcript[chr+"#"+strand][transcript+"#"+gene][0].append(int(start)) | |
| 62 gtf_transcript[chr+"#"+strand][transcript+"#"+gene][1].append(int(end)) | |
| 63 else: | |
| 64 gtf_transcript[chr+"#"+strand][transcript+"#"+gene] = [[],[]] | |
| 65 gtf_transcript[chr+"#"+strand][transcript+"#"+gene][0].append(int(start)) | |
| 66 gtf_transcript[chr+"#"+strand][transcript+"#"+gene][1].append(int(end)) | |
| 67 else: | |
| 68 gtf_transcript[chr+"#"+strand] = {} | |
| 69 gtf_transcript[chr+"#"+strand][transcript+"#"+gene] = [[],[]] | |
| 70 gtf_transcript[chr+"#"+strand][transcript+"#"+gene][0].append(int(start)) | |
| 71 gtf_transcript[chr+"#"+strand][transcript+"#"+gene][1].append(int(end)) | |
| 72 | |
| 73 if type == "gene": | |
| 74 if gtf_gene.has_key(chr+"#"+strand): | |
| 75 gtf_gene[chr+"#"+strand][0].append(int(start)) | |
| 76 gtf_gene[chr+"#"+strand][1].append(int(end)) | |
| 77 gtf_gene[chr+"#"+strand][2].append(gene) | |
| 78 else: | |
| 79 gtf_gene[chr+"#"+strand] = [[0],[0],["no_gene"]] | |
| 80 gtf_gene[chr+"#"+strand][0].append(int(start)) | |
| 81 gtf_gene[chr+"#"+strand][1].append(int(end)) | |
| 82 gtf_gene[chr+"#"+strand][2].append(gene) | |
| 83 | |
| 84 | |
| 85 | |
| 86 # "Starting Reading Intron . . ." | |
| 87 | |
| 88 gtf["+"]["intron"] = [] | |
| 89 gtf["-"]["intron"] = [] | |
| 90 for chr_strand in gtf_transcript.keys(): | |
| 91 chr = chr_strand.split("#")[0] | |
| 92 strand = chr_strand.split("#")[1] | |
| 93 | |
| 94 for transcript_gene in gtf_transcript[chr_strand].keys(): | |
| 95 start_list = gtf_transcript[chr_strand][transcript_gene][0] | |
| 96 end_list = gtf_transcript[chr_strand][transcript_gene][1] | |
| 97 sorted_start_index = [i[0] for i in sorted(enumerate(start_list), key=lambda x:x[1])] | |
| 98 sorted_end_index = [i[0] for i in sorted(enumerate(end_list), key=lambda x:x[1])] | |
| 99 if sorted_start_index == sorted_end_index: | |
| 100 sorted_start = sorted(start_list) | |
| 101 sorted_end = [end_list[i] for i in sorted_start_index] | |
| 102 for x in range(len(sorted_start))[1:]: | |
| 103 intron_start = sorted_end[x-1]+1 | |
| 104 intron_end = sorted_start[x]-1 | |
| 105 transcript = transcript_gene.split("#")[0] | |
| 106 gene = transcript_gene.split("#")[1] | |
| 107 data = (chr, str(intron_start), str(intron_end), gene, transcript, strand, "intron") | |
| 108 gtf[strand]["intron"].append(data) | |
| 109 | |
| 110 | |
| 111 # "Starting Reading Intergenic . . ." | |
| 112 | |
| 113 gtf["+"]["intergenic"] = [] | |
| 114 gtf["-"]["intergenic"] = [] | |
| 115 for chr_strand in gtf_gene.keys(): | |
| 116 chr = chr_strand.split("#")[0] | |
| 117 strand = chr_strand.split("#")[1] | |
| 118 start_list = gtf_gene[chr_strand][0] | |
| 119 end_list = gtf_gene[chr_strand][1] | |
| 120 gene_list = gtf_gene[chr_strand][2] | |
| 121 sorted_start_index = [i[0] for i in sorted(enumerate(start_list), key=lambda x:x[1])] | |
| 122 sorted_end_index = [i[0] for i in sorted(enumerate(end_list), key=lambda x:x[1])] | |
| 123 | |
| 124 sorted_start = sorted(start_list) | |
| 125 sorted_end = [end_list[i] for i in sorted_start_index] | |
| 126 sorted_gene = [gene_list[i] for i in sorted_start_index] | |
| 127 for x in range(len(sorted_start))[1:]: | |
| 128 intergene_start = sorted_end[x-1]+1 | |
| 129 intergene_end = sorted_start[x]-1 | |
| 130 if intergene_start < intergene_end: | |
| 131 intergene_1 = sorted_gene[x-1] | |
| 132 intergene_2 = sorted_gene[x] | |
| 133 gene = intergene_1 + "-#-" + intergene_2 | |
| 134 data = (chr, str(intergene_start), str(intergene_end), gene, "", strand, "intergenic") | |
| 135 gtf[strand]["intergenic"].append(data) | |
| 136 | |
| 137 import sqlite3 | |
| 138 # conn = sqlite3.connect('gtf_database.db') | |
| 139 conn = sqlite3.connect(":memory:") | |
| 140 c = conn.cursor() | |
| 141 # c.execute("DROP TABLE IF EXISTS gtf_data;") | |
| 142 # c.execute("CREATE TABLE IF NOT EXISTS gtf_data(chr text, start int, end int, gene text, transcript text, strand text, type text)") | |
| 143 c.execute("CREATE TABLE gtf_data(chr text, start int, end int, gene text, transcript text, strand text, type text)") | |
| 144 | |
| 145 for strand in gtf.keys(): | |
| 146 if strand == "+": | |
| 147 st = "positive" | |
| 148 elif strand == "-": | |
| 149 st = "negative" | |
| 150 else: | |
| 151 print "Something fishy in writing . . ." | |
| 152 | |
| 153 for type in gtf[strand].keys(): | |
| 154 data = gtf[strand][type] | |
| 155 c.executemany('INSERT INTO gtf_data VALUES (?,?,?,?,?,?,?)', data) | |
| 156 | |
| 157 conn.commit() | |
| 158 | |
| 159 infh = open(inputFile[2], "r") | |
| 160 # infh = open("Mouse_Data_All_peptides_withNewDBs.txt", "r") | |
| 161 data = infh.readlines() | |
| 162 # output file | |
| 163 outfh = open(inputFile[3], 'w') | |
| 164 # outfh = open("classified_1_Mouse_Data_All_peptides_withNewDBs.txt", "w") | |
| 165 | |
| 166 for each in data: | |
| 167 a = each.split("\t") | |
| 168 chr = a[0].strip() | |
| 169 pep_start = a[1].strip() | |
| 170 pep_end = a[2].strip() | |
| 171 strand = a[5].strip() | |
| 172 c.execute("select * from gtf_data where type = 'CDS' and chr = '"+chr+"' and start <= "+pep_start+" and end >= "+pep_end+" and strand = '"+strand+"' ") | |
| 173 rows = c.fetchall() | |
| 174 if len(rows) > 0: | |
| 175 outfh.write(each.strip() + "\tCDS\n") | |
| 176 else: | |
| 177 c.execute("select * from gtf_data where type = 'five_prime_utr' and chr = '"+chr+"' and start <= "+pep_start+" and end >= "+pep_end+" and strand = '"+strand+"' ") | |
| 178 rows = c.fetchall() | |
| 179 if len(rows) > 0: | |
| 180 outfh.write(each.strip() + "\tfive_prime_utr\n") | |
| 181 else: | |
| 182 c.execute("select * from gtf_data where type = 'three_prime_utr' and chr = '"+chr+"' and start <= "+pep_start+" and end >= "+pep_end+" and strand = '"+strand+"' ") | |
| 183 rows = c.fetchall() | |
| 184 if len(rows) > 0: | |
| 185 outfh.write(each.strip() + "\tthree_prime_utr\n") | |
| 186 else: | |
| 187 c.execute("select * from gtf_data where type = 'exon' and chr = '"+chr+"' and start <= "+pep_start+" and end >= "+pep_end+" and strand = '"+strand+"' ") | |
| 188 rows = c.fetchall() | |
| 189 if len(rows) > 0: | |
| 190 outfh.write(each.strip() + "\texon\n") | |
| 191 else: | |
| 192 c.execute("select * from gtf_data where type = 'intron' and chr = '"+chr+"' and start <= "+pep_start+" and end >= "+pep_end+" and strand = '"+strand+"' ") | |
| 193 rows = c.fetchall() | |
| 194 if len(rows) > 0: | |
| 195 outfh.write(each.strip() + "\tintron\n") | |
| 196 else: | |
| 197 c.execute("select * from gtf_data where type = 'gene' and chr = '"+chr+"' and start <= "+pep_start+" and end >= "+pep_end+" and strand = '"+strand+"' ") | |
| 198 rows = c.fetchall() | |
| 199 if len(rows) > 0: | |
| 200 outfh.write(each.strip() + "\tgene\n") | |
| 201 else: | |
| 202 c.execute("select * from gtf_data where type = 'intergenic' and chr = '"+chr+"' and start <= "+pep_start+" and end >= "+pep_end+" and strand = '"+strand+"' ") | |
| 203 rows = c.fetchall() | |
| 204 if len(rows) > 0: | |
| 205 outfh.write(each.strip() + "\tintergene\n") | |
| 206 else: | |
| 207 outfh.write(each.strip() + "\tOVERLAPPING_ON_TWO_REGIONS: PLEASE_LOOK_MANUALLY (Will be updated in next version)\n") | |
| 208 | |
| 209 conn.close() | |
| 210 outfh.close() | |
| 211 else: | |
| 212 print "USAGE: python pep_pointer.py <input GTF file> <input tblastn file> <name of output file>" | |
| 213 return None | |
| 214 | |
| 215 if __name__ == "__main__": | |
| 216 main() | |
| 217 | |
| 218 | |
| 219 | |
| 220 | |
| 221 |
