Mercurial > repos > galaxyp > msi_preprocessing
comparison msi_preprocessing.xml @ 5:755d77066d4b draft
planemo upload for repository https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/msi_preprocessing commit 37da74ed68228b16efbdbde776e7c38cc06eb5d5
| author | galaxyp |
|---|---|
| date | Tue, 19 Jun 2018 18:05:34 -0400 |
| parents | ada9dee67b5d |
| children | 82a0eba2e3af |
comparison
equal
deleted
inserted
replaced
| 4:ada9dee67b5d | 5:755d77066d4b |
|---|---|
| 1 <tool id="mass_spectrometry_imaging_preprocessing" name="MSI preprocessing" version="1.10.0.1"> | 1 <tool id="mass_spectrometry_imaging_preprocessing" name="MSI preprocessing" version="1.10.0.2"> |
| 2 <description> | 2 <description> |
| 3 mass spectrometry imaging preprocessing | 3 mass spectrometry imaging preprocessing |
| 4 </description> | 4 </description> |
| 5 <requirements> | 5 <requirements> |
| 6 <requirement type="package" version="1.10.0">bioconductor-cardinal</requirement> | 6 <requirement type="package" version="1.10.0">bioconductor-cardinal</requirement> |
| 7 <requirement type="package" version="2.2.1">r-gridextra</requirement> | 7 <requirement type="package" version="2.2.1">r-gridextra</requirement> |
| 8 <requirement type="package" version="0.20-35">r-lattice</requirement> | 8 <requirement type="package" version="0.20-35">r-lattice</requirement> |
| 9 <requirement type="package" version="3.34.9">bioconductor-limma</requirement> | 9 <!--requirement type="package" version="3.34.9">bioconductor-limma</requirement--> |
| 10 </requirements> | 10 </requirements> |
| 11 <command detect_errors="exit_code"> | 11 <command detect_errors="exit_code"> |
| 12 <![CDATA[ | 12 <![CDATA[ |
| 13 | 13 |
| 14 #if $infile.ext == 'imzml' | 14 #if $infile.ext == 'imzml' |
| 32 ################################# load libraries and read file ################# | 32 ################################# load libraries and read file ################# |
| 33 | 33 |
| 34 library(Cardinal) | 34 library(Cardinal) |
| 35 library(gridExtra) | 35 library(gridExtra) |
| 36 library(lattice) | 36 library(lattice) |
| 37 library(limma) | 37 ###library(limma) |
| 38 | 38 |
| 39 #if $infile.ext == 'imzml' | 39 #if $infile.ext == 'imzml' |
| 40 msidata = readImzML('infile') | 40 msidata <- readImzML('infile', mass.accuracy=$accuracy, units.accuracy = "$units") |
| 41 #elif $infile.ext == 'analyze75' | 41 #elif $infile.ext == 'analyze75' |
| 42 msidata = readAnalyze('infile') | 42 msidata = readAnalyze('infile') |
| 43 #else | 43 #else |
| 44 load('infile.RData') | 44 load('infile.RData') |
| 45 #end if | 45 #end if |
| 50 #loads an RData file, and returns it | 50 #loads an RData file, and returns it |
| 51 load(fileName) | 51 load(fileName) |
| 52 get(ls()[ls() != "fileName"]) | 52 get(ls()[ls() != "fileName"]) |
| 53 } | 53 } |
| 54 | 54 |
| 55 ######################### preparations for optional QC report ################# | 55 ######################### preparations for QC report ################# |
| 56 | |
| 57 #if $outputs.outputs_select == "quality_control": | |
| 58 | |
| 59 ### values for QC table: | |
| 60 | 56 |
| 61 maxfeatures = length(features(msidata)) | 57 maxfeatures = length(features(msidata)) |
| 62 medianpeaks = median(colSums(spectra(msidata)[]>0)) | 58 medianpeaks = median(colSums(spectra(msidata)[]>0)) |
| 63 medint = round(median(spectra(msidata)[]), digits=2) | 59 medint = round(median(spectra(msidata)[]), digits=2) |
| 64 TICs = round(mean(colSums(spectra(msidata)[])), digits=1) | 60 TICs = round(mean(colSums(spectra(msidata)[])), digits=1) |
| 65 QC_numbers= data.frame(rawdata = c(maxfeatures, medianpeaks, medint, TICs)) | 61 QC_numbers= data.frame(inputdata = c(maxfeatures, medianpeaks, medint, TICs)) |
| 66 vectorofactions = "rawdata" | 62 vectorofactions = "inputdata" |
| 67 | |
| 68 ### Read tabular file with calibrant m/z: | |
| 69 | |
| 70 calibrant_list = read.delim("$outputs.calibrant_file", header = FALSE, stringsAsFactors = FALSE) | |
| 71 | |
| 72 ### calculate how many input calibrant m/z are valid: | |
| 73 | |
| 74 inputcalibrants = calibrant_list[calibrant_list[,$outputs.calibrants_column]>min(mz(msidata)) & calibrant_list[,$outputs.calibrants_column]<max(mz(msidata)),$outputs.calibrants_column] | |
| 75 number_calibrants_in = length(calibrant_list[,$outputs.calibrants_column]) | |
| 76 number_calibrants_valid = length(inputcalibrants) | |
| 77 | |
| 78 ### Quality control report | |
| 79 | |
| 80 pdf("Preprocessing.pdf", fonts = "Times", pointsize = 12) | |
| 81 plot(0,type='n',axes=FALSE,ann=FALSE) | |
| 82 title(main=paste("Quality control during preprocessing \n", "Filename:", "$infile.display_name")) | |
| 83 title(main=paste0("\n\n\n\n Number valid m/z in ", "$outputs.calibrant_file.display_name",": ", number_calibrants_valid, "/", number_calibrants_in)) | |
| 84 | |
| 85 for (calibrant in inputcalibrants) | |
| 86 {currentimage = image(msidata , mz=calibrant, strip = strip.custom(bg="lightgrey", | |
| 87 par.strip.text=list(col="black", cex=.9)),lattice=TRUE, | |
| 88 scales = list(draw = FALSE), plusminus = $outputs.plusminus_dalton, main="raw") | |
| 89 assign(paste("rawdata",calibrant, sep="_"), currentimage)} | |
| 90 | |
| 91 current_plot_raw = vector(length(inputcalibrants), mode='list') | |
| 92 | |
| 93 #end if | |
| 94 | 63 |
| 95 ############################### Preprocessing steps ########################### | 64 ############################### Preprocessing steps ########################### |
| 96 ############################################################################### | 65 ############################################################################### |
| 97 | 66 |
| 98 #for $method in $methods: | 67 #for $method in $methods: |
| 103 print('Normalization') | 72 print('Normalization') |
| 104 ##normalization | 73 ##normalization |
| 105 | 74 |
| 106 msidata = normalize(msidata, method="tic") | 75 msidata = normalize(msidata, method="tic") |
| 107 | 76 |
| 108 ############################### optional QC ########################### | 77 ############################### QC ########################### |
| 109 | 78 |
| 110 #if $outputs.outputs_select == "quality_control": | |
| 111 | |
| 112 ### values for QC table: | |
| 113 maxfeatures = length(features(msidata)) | 79 maxfeatures = length(features(msidata)) |
| 114 medianpeaks = median(colSums(spectra(msidata)[]>0)) | 80 medianpeaks = median(colSums(spectra(msidata)[]>0)) |
| 115 medint = round(median(spectra(msidata)[]), digits=2) | 81 medint = round(median(spectra(msidata)[]), digits=2) |
| 116 TICs = round(mean(colSums(spectra(msidata)[])), digits=1) | 82 TICs = round(mean(colSums(spectra(msidata)[])), digits=1) |
| 117 normalized = c(maxfeatures, medianpeaks, medint, TICs) | 83 normalized = c(maxfeatures, medianpeaks, medint, TICs) |
| 118 QC_numbers= cbind(QC_numbers, normalized) | 84 QC_numbers= cbind(QC_numbers, normalized) |
| 119 | |
| 120 ### preparation for QC plots | |
| 121 vectorofactions = append(vectorofactions, "normalized") | 85 vectorofactions = append(vectorofactions, "normalized") |
| 122 for (calibrant in inputcalibrants) | |
| 123 {currentimage = image(msidata , mz=calibrant, strip = strip.custom(bg="lightgrey", | |
| 124 par.strip.text=list(col="black", cex=.9)),lattice=TRUE, | |
| 125 scales = list(draw = FALSE), plusminus = $outputs.plusminus_dalton, main="normalized") | |
| 126 assign(paste("normalized",calibrant, sep="_"), currentimage)} | |
| 127 | |
| 128 #end if | |
| 129 | 86 |
| 130 ############################### Baseline reduction ########################### | 87 ############################### Baseline reduction ########################### |
| 131 | 88 |
| 132 #elif str( $method.methods_conditional.preprocessing_method ) == 'Baseline_reduction': | 89 #elif str( $method.methods_conditional.preprocessing_method ) == 'Baseline_reduction': |
| 133 print('Baseline_reduction') | 90 print('Baseline_reduction') |
| 134 ##baseline reduction | 91 ##baseline reduction |
| 135 | 92 |
| 136 msidata = reduceBaseline(msidata, method="median", blocks=$method.methods_conditional.blocks_baseline) | 93 msidata = reduceBaseline(msidata, method="median", blocks=$method.methods_conditional.blocks_baseline) |
| 137 | 94 |
| 138 ############################### optional QC ########################### | 95 ############################### QC ########################### |
| 139 | 96 |
| 140 #if $outputs.outputs_select == "quality_control": | |
| 141 | |
| 142 ### values for QC table: | |
| 143 maxfeatures = length(features(msidata)) | 97 maxfeatures = length(features(msidata)) |
| 144 medianpeaks = median(colSums(spectra(msidata)[]>0)) | 98 medianpeaks = median(colSums(spectra(msidata)[]>0)) |
| 145 medint = round(median(spectra(msidata)[]), digits=2) | 99 medint = round(median(spectra(msidata)[]), digits=2) |
| 146 TICs = round(mean(colSums(spectra(msidata)[])), digits=1) | 100 TICs = round(mean(colSums(spectra(msidata)[])), digits=1) |
| 147 baseline= c(maxfeatures, medianpeaks, medint, TICs) | 101 baseline= c(maxfeatures, medianpeaks, medint, TICs) |
| 148 QC_numbers= cbind(QC_numbers, baseline) | 102 QC_numbers= cbind(QC_numbers, baseline) |
| 149 | 103 vectorofactions = append(vectorofactions, "baseline red.") |
| 150 ### preparation for QC plots | |
| 151 vectorofactions = append(vectorofactions, "baseline_rem") | |
| 152 | |
| 153 for (calibrant in inputcalibrants) | |
| 154 {currentimage = image(msidata , mz=calibrant, strip = strip.custom(bg="lightgrey", | |
| 155 par.strip.text=list(col="black", cex=.9)),lattice=TRUE, | |
| 156 scales = list(draw = FALSE), plusminus = $outputs.plusminus_dalton, main="baseline removed") | |
| 157 assign(paste("baseline_rem",calibrant, sep="_"), currentimage)} | |
| 158 | |
| 159 #end if | |
| 160 | 104 |
| 161 ############################### Smoothing ########################### | 105 ############################### Smoothing ########################### |
| 162 | 106 |
| 163 #elif str( $method.methods_conditional.preprocessing_method ) == 'Smoothing': | 107 #elif str( $method.methods_conditional.preprocessing_method ) == 'Smoothing': |
| 164 print('Smoothing') | 108 print('Smoothing') |
| 178 | 122 |
| 179 msidata = smoothSignal(msidata, method="$method.methods_conditional.methods_for_smoothing.smoothing_method", window=$method.methods_conditional.window_smoothing, coef = $method.methods_conditional.methods_for_smoothing.coefficients_ma_filter) | 123 msidata = smoothSignal(msidata, method="$method.methods_conditional.methods_for_smoothing.smoothing_method", window=$method.methods_conditional.window_smoothing, coef = $method.methods_conditional.methods_for_smoothing.coefficients_ma_filter) |
| 180 | 124 |
| 181 #end if | 125 #end if |
| 182 | 126 |
| 183 ############################### optional QC ########################### | 127 ############################### QC ########################### |
| 184 | 128 |
| 185 #if $outputs.outputs_select == "quality_control": | |
| 186 | |
| 187 ### values for QC table: | |
| 188 maxfeatures = length(features(msidata)) | 129 maxfeatures = length(features(msidata)) |
| 189 medianpeaks = median(colSums(spectra(msidata)[]>0)) | 130 medianpeaks = median(colSums(spectra(msidata)[]>0)) |
| 190 medint = round(median(spectra(msidata)[]), digits=2) | 131 medint = round(median(spectra(msidata)[]), digits=2) |
| 191 TICs = round(mean(colSums(spectra(msidata)[])), digits=1) | 132 TICs = round(mean(colSums(spectra(msidata)[])), digits=1) |
| 192 smoothed= c(maxfeatures, medianpeaks, medint, TICs) | 133 smoothed= c(maxfeatures, medianpeaks, medint, TICs) |
| 193 QC_numbers= cbind(QC_numbers, smoothed) | 134 QC_numbers= cbind(QC_numbers, smoothed) |
| 194 | |
| 195 ### preparation for QC plots | |
| 196 vectorofactions = append(vectorofactions, "smoothed") | 135 vectorofactions = append(vectorofactions, "smoothed") |
| 197 | |
| 198 for (calibrant in inputcalibrants) | |
| 199 {currentimage = image(msidata , mz=calibrant, strip = strip.custom(bg="lightgrey", | |
| 200 par.strip.text=list(col="black", cex=.9)),lattice=TRUE, | |
| 201 scales = list(draw = FALSE), plusminus = $outputs.plusminus_dalton, main="smoothed") | |
| 202 assign(paste("smoothed",calibrant, sep="_"), currentimage)} | |
| 203 | |
| 204 #end if | |
| 205 | 136 |
| 206 ############################### Peak picking ########################### | 137 ############################### Peak picking ########################### |
| 207 | 138 |
| 208 #elif str( $method.methods_conditional.preprocessing_method) == 'Peak_picking': | 139 #elif str( $method.methods_conditional.preprocessing_method) == 'Peak_picking': |
| 209 print('Peak_picking') | 140 print('Peak_picking') |
| 224 | 155 |
| 225 msidata = peakPick(msidata, window = $method.methods_conditional.window_picking, blocks = $method.methods_conditional.blocks_picking, method='$method.methods_conditional.methods_for_picking.picking_method', SNR=$method.methods_conditional.SNR_picking_method) | 156 msidata = peakPick(msidata, window = $method.methods_conditional.window_picking, blocks = $method.methods_conditional.blocks_picking, method='$method.methods_conditional.methods_for_picking.picking_method', SNR=$method.methods_conditional.SNR_picking_method) |
| 226 | 157 |
| 227 #end if | 158 #end if |
| 228 | 159 |
| 229 ############################### optional QC ########################### | 160 ############################### QC ########################### |
| 230 | 161 |
| 231 #if $outputs.outputs_select == "quality_control": | |
| 232 | |
| 233 ### values for QC table: | |
| 234 maxfeatures = length(features(msidata)) | 162 maxfeatures = length(features(msidata)) |
| 235 medianpeaks = median(colSums(spectra(msidata)[]>0)) | 163 medianpeaks = median(colSums(spectra(msidata)[]>0)) |
| 236 medint = round(median(spectra(msidata)[]), digits=2) | 164 medint = round(median(spectra(msidata)[]), digits=2) |
| 237 TICs = round(mean(colSums(spectra(msidata)[])), digits=1) | 165 TICs = round(mean(colSums(spectra(msidata)[])), digits=1) |
| 238 picked= c(maxfeatures, medianpeaks, medint, TICs) | 166 picked= c(maxfeatures, medianpeaks, medint, TICs) |
| 239 QC_numbers= cbind(QC_numbers, picked) | 167 QC_numbers= cbind(QC_numbers, picked) |
| 240 | |
| 241 ### preparation for QC plots | |
| 242 vectorofactions = append(vectorofactions, "picked") | 168 vectorofactions = append(vectorofactions, "picked") |
| 243 | |
| 244 for (calibrant in inputcalibrants) | |
| 245 {currentimage = image(msidata , mz=calibrant, strip = strip.custom(bg="lightgrey", | |
| 246 par.strip.text=list(col="black", cex=.9)),lattice=TRUE, | |
| 247 scales = list(draw = FALSE), plusminus = $outputs.plusminus_dalton, main="picked") | |
| 248 assign(paste("picked",calibrant, sep="_"), currentimage)} | |
| 249 | |
| 250 #end if | |
| 251 | 169 |
| 252 ############################### Peak alignment ########################### | 170 ############################### Peak alignment ########################### |
| 253 | 171 |
| 254 #elif str( $method.methods_conditional.preprocessing_method ) == 'Peak_alignment': | 172 #elif str( $method.methods_conditional.preprocessing_method ) == 'Peak_alignment': |
| 255 print('Peak_alignment') | 173 print('Peak_alignment') |
| 283 | 201 |
| 284 msidata = peakAlign(msidata, method='$method.methods_conditional.methods_for_alignment.alignment_method',gap = $method.methods_conditional.methods_for_alignment.gap_DPalignment, ref=align_peak_reference) | 202 msidata = peakAlign(msidata, method='$method.methods_conditional.methods_for_alignment.alignment_method',gap = $method.methods_conditional.methods_for_alignment.gap_DPalignment, ref=align_peak_reference) |
| 285 | 203 |
| 286 #end if | 204 #end if |
| 287 | 205 |
| 288 ############################### optional QC ########################### | 206 ############################### QC ########################### |
| 289 #if $outputs.outputs_select == "quality_control": | 207 |
| 290 | |
| 291 ### values for QC table: | |
| 292 maxfeatures = length(features(msidata)) | 208 maxfeatures = length(features(msidata)) |
| 293 medianpeaks = median(colSums(spectra(msidata)[]>0)) | 209 medianpeaks = median(colSums(spectra(msidata)[]>0)) |
| 294 medint = round(median(spectra(msidata)[]), digits=2) | 210 medint = round(median(spectra(msidata)[]), digits=2) |
| 295 TICs = round(mean(colSums(spectra(msidata)[])), digits=1) | 211 TICs = round(mean(colSums(spectra(msidata)[])), digits=1) |
| 296 aligned= c(maxfeatures, medianpeaks, medint, TICs) | 212 aligned= c(maxfeatures, medianpeaks, medint, TICs) |
| 297 QC_numbers= cbind(QC_numbers, aligned) | 213 QC_numbers= cbind(QC_numbers, aligned) |
| 298 | |
| 299 ### preparation for QC plots | |
| 300 vectorofactions = append(vectorofactions, "aligned") | 214 vectorofactions = append(vectorofactions, "aligned") |
| 301 | |
| 302 for (calibrant in inputcalibrants) | |
| 303 {currentimage = image(msidata , mz=calibrant, strip = strip.custom(bg="lightgrey", | |
| 304 par.strip.text=list(col="black", cex=.9)),lattice=TRUE, | |
| 305 scales = list(draw = FALSE), plusminus = $outputs.plusminus_dalton, main="aligned") | |
| 306 assign(paste("aligned",calibrant, sep="_"), currentimage)} | |
| 307 | |
| 308 #end if | |
| 309 | 215 |
| 310 ############################### Peak filtering ########################### | 216 ############################### Peak filtering ########################### |
| 311 | 217 |
| 312 #elif str( $method.methods_conditional.preprocessing_method) == 'Peak_filtering': | 218 #elif str( $method.methods_conditional.preprocessing_method) == 'Peak_filtering': |
| 313 print('Peak_filtering') | 219 print('Peak_filtering') |
| 314 | 220 |
| 315 msidata = peakFilter(msidata, method='freq', freq.min = $method.methods_conditional.frequ_filtering) | 221 msidata = peakFilter(msidata, method='freq', freq.min = $method.methods_conditional.frequ_filtering) |
| 316 | 222 |
| 317 ############################### optional QC ########################### | 223 ############################### QC ########################### |
| 318 | 224 |
| 319 #if $outputs.outputs_select == "quality_control": | |
| 320 | |
| 321 ### values for QC table: | |
| 322 maxfeatures = length(features(msidata)) | 225 maxfeatures = length(features(msidata)) |
| 323 medianpeaks = median(colSums(spectra(msidata)[]>0)) | 226 medianpeaks = median(colSums(spectra(msidata)[]>0)) |
| 324 medint = round(median(spectra(msidata)[]), digits=2) | 227 medint = round(median(spectra(msidata)[]), digits=2) |
| 325 TICs = round(mean(colSums(spectra(msidata)[])), digits=1) | 228 TICs = round(mean(colSums(spectra(msidata)[])), digits=1) |
| 326 filtered= c(maxfeatures, medianpeaks, medint, TICs) | 229 filtered= c(maxfeatures, medianpeaks, medint, TICs) |
| 327 QC_numbers= cbind(QC_numbers, filtered) | 230 QC_numbers= cbind(QC_numbers, filtered) |
| 328 | |
| 329 ### preparation for QC plots | |
| 330 vectorofactions = append(vectorofactions, "filtered") | 231 vectorofactions = append(vectorofactions, "filtered") |
| 331 | |
| 332 for (calibrant in inputcalibrants) | |
| 333 {currentimage = image(msidata , mz=calibrant, strip = strip.custom(bg="lightgrey", | |
| 334 par.strip.text=list(col="black", cex=.9)),lattice=TRUE, | |
| 335 scales = list(draw = FALSE), plusminus = $outputs.plusminus_dalton, main="filtered") | |
| 336 assign(paste("filtered",calibrant, sep="_"), currentimage)} | |
| 337 | |
| 338 #end if | |
| 339 | 232 |
| 340 ############################### Data reduction ########################### | 233 ############################### Data reduction ########################### |
| 341 | 234 |
| 342 #elif str( $method.methods_conditional.preprocessing_method) == 'Data_reduction': | 235 #elif str( $method.methods_conditional.preprocessing_method) == 'Data_reduction': |
| 343 print('Data_reduction') | 236 print('Data_reduction') |
| 366 peak_reference = loadRData('$method.methods_conditional.methods_for_reduction.ref_type.peaks_msidata') | 259 peak_reference = loadRData('$method.methods_conditional.methods_for_reduction.ref_type.peaks_msidata') |
| 367 | 260 |
| 368 #end if | 261 #end if |
| 369 | 262 |
| 370 msidata = reduceDimension(msidata, method="peaks", ref=peak_reference, type="$method.methods_conditional.methods_for_reduction.peaks_type") | 263 msidata = reduceDimension(msidata, method="peaks", ref=peak_reference, type="$method.methods_conditional.methods_for_reduction.peaks_type") |
| 371 | |
| 372 #end if | 264 #end if |
| 373 | 265 ############################### QC ########################### |
| 374 ############################### optional QC ########################### | 266 |
| 375 | |
| 376 #if $outputs.outputs_select == "quality_control": | |
| 377 | |
| 378 ### values for QC table: | |
| 379 maxfeatures = length(features(msidata)) | 267 maxfeatures = length(features(msidata)) |
| 380 medianpeaks = median(colSums(spectra(msidata)[]>0)) | 268 medianpeaks = median(colSums(spectra(msidata)[]>0)) |
| 381 medint = round(median(spectra(msidata)[]), digits=2) | 269 medint = round(median(spectra(msidata)[]), digits=2) |
| 382 TICs = round(mean(colSums(spectra(msidata)[])), digits=1) | 270 TICs = round(mean(colSums(spectra(msidata)[])), digits=1) |
| 383 reduced= c(maxfeatures, medianpeaks, medint, TICs) | 271 reduced= c(maxfeatures, medianpeaks, medint, TICs) |
| 384 QC_numbers= cbind(QC_numbers, reduced) | 272 QC_numbers= cbind(QC_numbers, reduced) |
| 385 | |
| 386 ### preparation for QC plots | |
| 387 vectorofactions = append(vectorofactions, "reduced") | 273 vectorofactions = append(vectorofactions, "reduced") |
| 388 | 274 |
| 389 for (calibrant in inputcalibrants) | |
| 390 {currentimage = image(msidata , mz=calibrant, strip = strip.custom(bg="lightgrey", | |
| 391 par.strip.text=list(col="black", cex=.9)),lattice=TRUE, | |
| 392 scales = list(draw = FALSE), plusminus = $outputs.plusminus_dalton, main="reduced") | |
| 393 assign(paste("reduced",calibrant, sep="_"), currentimage)} | |
| 394 | |
| 395 #end if | |
| 396 | |
| 397 ############################### Transformation ########################### | 275 ############################### Transformation ########################### |
| 398 | 276 |
| 399 ####elif str( $method.methods_conditional.preprocessing_method) == 'Transformation': | 277 #elif str( $method.methods_conditional.preprocessing_method) == 'Transformation': |
| 400 ###print('Transformation') | 278 print('Transformation') |
| 401 | 279 |
| 402 ####if str( $method.methods_conditional.transf_conditional.trans_type) == 'log2': | 280 #if str( $method.methods_conditional.transf_conditional.trans_type) == 'log2': |
| 403 ####print('log2 transformation') | 281 print('log2 transformation') |
| 404 | 282 |
| 405 ###spectra(msidata)[spectra(msidata) ==0] = NA | 283 spectra(msidata)[][spectra(msidata)[] ==0] = NA |
| 406 ###print(paste0("Number of 0 which were converted into NA:",sum(is.na(spectra(msidata))))) | 284 print(paste0("Number of 0 which were converted into NA:",sum(is.na(spectra(msidata)[])))) |
| 407 ###spectra(msidata) = log2(spectra(msidata)) | 285 spectra(msidata)[] = log2(spectra(msidata)[]) |
| 408 | 286 |
| 409 ####elif str( $method.methods_conditional.transf_conditional.trans_type) == 'sqrt': | 287 #elif str( $method.methods_conditional.transf_conditional.trans_type) == 'sqrt': |
| 410 ###print('squareroot transformation') | 288 print('squareroot transformation') |
| 411 | 289 |
| 412 ###spectra(msidata) = sqrt(spectra(msidata)) | 290 spectra(msidata)[] = sqrt(spectra(msidata)[]) |
| 413 | 291 |
| 414 ###end if | 292 #end if |
| 415 | 293 |
| 416 ############################### optional QC ########################### | 294 ############################### QC ########################### |
| 417 | 295 |
| 418 #if $outputs.outputs_select == "quality_control": | |
| 419 | |
| 420 ### values for QC table: | |
| 421 maxfeatures = length(features(msidata)) | 296 maxfeatures = length(features(msidata)) |
| 422 medianpeaks = median(colSums(spectra(msidata)[]>0), na.rm=TRUE) | 297 medianpeaks = median(colSums(spectra(msidata)[]>0), na.rm=TRUE) |
| 423 medint = round(median(spectra(msidata)[], na.rm=TRUE), digits=2) | 298 medint = round(median(spectra(msidata)[], na.rm=TRUE), digits=2) |
| 424 TICs = round(mean(colSums(spectra(msidata)[]), na.rm=TRUE), digits=1) | 299 TICs = round(mean(colSums(spectra(msidata)[]), na.rm=TRUE), digits=1) |
| 425 transformed= c(maxfeatures, medianpeaks, medint, TICs) | 300 transformed= c(maxfeatures, medianpeaks, medint, TICs) |
| 426 QC_numbers= cbind(QC_numbers, transformed) | 301 QC_numbers= cbind(QC_numbers, transformed) |
| 427 | |
| 428 ### preparation for QC plots | |
| 429 vectorofactions = append(vectorofactions, "transformed") | 302 vectorofactions = append(vectorofactions, "transformed") |
| 430 | 303 |
| 431 for (calibrant in inputcalibrants) | |
| 432 {currentimage = image(msidata , mz=calibrant, strip = strip.custom(bg="lightgrey", | |
| 433 par.strip.text=list(col="black", cex=.9)),lattice=TRUE, | |
| 434 scales = list(draw = FALSE), plusminus = $outputs.plusminus_dalton, main="transformed") | |
| 435 assign(paste("transformed",calibrant, sep="_"), currentimage)} | |
| 436 | |
| 437 #end if | 304 #end if |
| 438 | |
| 439 ############################### optional QC ########################### | |
| 440 | |
| 441 #if $outputs.outputs_select == "quality_control": | |
| 442 | |
| 443 ### values for QC table: | |
| 444 maxfeatures = length(features(msidata)) | |
| 445 medianpeaks = median(colSums(spectra(msidata)[]>0)) | |
| 446 medint = round(median(spectra(msidata)[]), digits=2) | |
| 447 TICs = round(mean(colSums(spectra(msidata)[])), digits=1) | |
| 448 sample_norm= c(maxfeatures, medianpeaks, medint, TICs) | |
| 449 QC_numbers= cbind(QC_numbers, sample_norm) | |
| 450 | |
| 451 ### preparation for QC plots | |
| 452 vectorofactions = append(vectorofactions, "sample_norm") | |
| 453 | |
| 454 for (calibrant in inputcalibrants) | |
| 455 {currentimage = image(msidata , mz=calibrant, strip = strip.custom(bg="lightgrey", | |
| 456 par.strip.text=list(col="black", cex=.9)),lattice=TRUE, | |
| 457 scales = list(draw = FALSE), plusminus = $outputs.plusminus_dalton, main="sample normalized") | |
| 458 assign(paste("sample_norm",calibrant, sep="_"), currentimage)} | |
| 459 | |
| 460 #end if | |
| 461 | |
| 462 #end if | |
| 463 #end for | 305 #end for |
| 464 | 306 |
| 465 ###################### Outputs: RData, tabular and QC report ################### | 307 ############# Outputs: summar matrix, RData, tabular and QC report ############# |
| 466 ############################################################################### | 308 ################################################################################ |
| 309 ## optional summarized matrix | |
| 310 print('Summarized matrix') | |
| 311 | |
| 312 #if "mean" in str($summary_type).split(","): | |
| 313 print("mean matrix") | |
| 314 if (!is.null(levels(msidata\$combined_sample))){ | |
| 315 | |
| 316 sample_matrix = matrix(,ncol=0, nrow=nrow(msidata)) | |
| 317 count = 1 | |
| 318 for (subsample in levels(msidata\$combined_sample)){ | |
| 319 subsample_pixels = msidata[,msidata\$combined_sample == subsample] | |
| 320 subsample_calc = apply(spectra(subsample_pixels)[],1,mean, na.rm=TRUE) | |
| 321 sample_matrix = cbind(sample_matrix, subsample_calc) | |
| 322 count = count+1 | |
| 323 } | |
| 324 rownames(sample_matrix) = mz(msidata) | |
| 325 colnames(sample_matrix) = levels(msidata\$combined_sample) | |
| 326 write.table(sample_matrix, file="$summarized_output_mean", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") | |
| 327 }else{ | |
| 328 full_sample_calc = as.data.frame(apply(spectra(msidata)[],1,mean, na.rm=TRUE)) | |
| 329 rownames(full_sample_calc) = mz(msidata) | |
| 330 colnames(full_sample_calc) = "$infile.display_name" | |
| 331 write.table(full_sample_calc, file="$summarized_output_mean", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") | |
| 332 } | |
| 333 | |
| 334 #end if | |
| 335 | |
| 336 #if "median" in str($summary_type).split(","): | |
| 337 print("median matrix") | |
| 338 if (!is.null(levels(msidata\$combined_sample))){ | |
| 339 sample_matrix = matrix(,ncol=0, nrow=nrow(msidata)) | |
| 340 count = 1 | |
| 341 for (subsample in levels(msidata\$combined_sample)){ | |
| 342 subsample_pixels = msidata[,msidata\$combined_sample == subsample] | |
| 343 subsample_calc = apply(spectra(subsample_pixels)[],1,median, na.rm=TRUE) | |
| 344 sample_matrix = cbind(sample_matrix, subsample_calc) | |
| 345 count = count+1 | |
| 346 } | |
| 347 | |
| 348 rownames(sample_matrix) = mz(msidata) | |
| 349 colnames(sample_matrix) = levels(msidata\$combined_sample) | |
| 350 write.table(sample_matrix, file="$summarized_output_median", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") | |
| 351 }else{ | |
| 352 full_sample_calc = apply(spectra(msidata)[],1,median, na.rm=TRUE) | |
| 353 rownames(full_sample_calc) = mz(msidata) | |
| 354 colnames(full_sample_calc) = "$infile.display_name" | |
| 355 write.table(full_sample_calc, file="$summarized_output_mean", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") | |
| 356 } | |
| 357 #end if | |
| 358 | |
| 359 #if "sd" in str($summary_type).split(","): | |
| 360 print("sd matrix") | |
| 361 if (!is.null(levels(msidata\$combined_sample))){ | |
| 362 sample_matrix = matrix(,ncol=0, nrow=nrow(msidata)) | |
| 363 count = 1 | |
| 364 for (subsample in levels(msidata\$combined_sample)){ | |
| 365 subsample_pixels = msidata[,msidata\$combined_sample == subsample] | |
| 366 subsample_calc = apply(spectra(subsample_pixels)[],1,sd, na.rm=TRUE) | |
| 367 sample_matrix = cbind(sample_matrix, subsample_calc) | |
| 368 count = count+1 | |
| 369 } | |
| 370 | |
| 371 rownames(sample_matrix) = mz(msidata) | |
| 372 colnames(sample_matrix) = levels(msidata\$combined_sample) | |
| 373 write.table(sample_matrix, file="$summarized_output_sd", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") | |
| 374 }else{ | |
| 375 full_sample_calc = apply(spectra(msidata)[],1,sd, na.rm=TRUE) | |
| 376 rownames(full_sample_calc) = mz(msidata) | |
| 377 colnames(full_sample_calc) = "$infile.display_name" | |
| 378 write.table(full_sample_calc, file="$summarized_output_mean", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") | |
| 379 } | |
| 380 #end if | |
| 467 | 381 |
| 468 ## save as (.RData) | 382 ## save as (.RData) |
| 469 save(msidata, file="$msidata_preprocessed") | 383 save(msidata, file="$msidata_preprocessed") |
| 470 | 384 |
| 471 print(paste0("Number of NAs in intensity matrix: ", sum(is.na(spectra(msidata))))) | 385 print(paste0("Number of NAs in intensity matrix: ", sum(is.na(spectra(msidata)[])))) |
| 472 | 386 |
| 473 ## save output matrix | 387 ## save output matrix |
| 474 #if $output_matrix: | 388 #if $output_matrix: |
| 475 | |
| 476 | 389 |
| 477 if (length(features(msidata))> 0) | 390 if (length(features(msidata))> 0) |
| 478 { | 391 { |
| 479 ## save as intensity matrix | 392 ## save as intensity matrix |
| 480 spectramatrix = spectra(msidata) | 393 spectramatrix = spectra(msidata)[] |
| 481 rownames(spectramatrix) = mz(msidata) | 394 rownames(spectramatrix) = mz(msidata) |
| 482 newmatrix = rbind(pixels(msidata), spectramatrix) | 395 newmatrix = rbind(pixels(msidata), spectramatrix) |
| 483 write.table(newmatrix[2:nrow(newmatrix),], file="$matrixasoutput", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") | 396 write.table(newmatrix[2:nrow(newmatrix),], file="$matrixasoutput", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") |
| 484 | 397 |
| 485 }else{ | 398 }else{ |
| 488 } | 401 } |
| 489 | 402 |
| 490 #end if | 403 #end if |
| 491 | 404 |
| 492 ## save QC report | 405 ## save QC report |
| 493 #if $outputs.outputs_select == "quality_control": | 406 |
| 494 | 407 pdf("Preprocessing.pdf", fonts = "Times", pointsize = 12) |
| 408 plot(0,type='n',axes=FALSE,ann=FALSE) | |
| 409 title(main=paste("Quality control during preprocessing \n", "Filename:", "$infile.display_name")) | |
| 495 rownames(QC_numbers) = c("# features", "median # peaks", "median intensity", "median TIC") | 410 rownames(QC_numbers) = c("# features", "median # peaks", "median intensity", "median TIC") |
| 496 grid.table(t(QC_numbers)) | 411 grid.table(t(QC_numbers)) |
| 497 | |
| 498 for (calibrant in inputcalibrants) | |
| 499 {imagelist = list() | |
| 500 for (numberprepro in 1:length(vectorofactions)){ | |
| 501 imagelist[[numberprepro]] = get(paste(vectorofactions[numberprepro],calibrant, sep="_"))} | |
| 502 do.call(grid.arrange,imagelist)} | |
| 503 | |
| 504 dev.off() | 412 dev.off() |
| 505 | |
| 506 #end if | |
| 507 | |
| 508 | 413 |
| 509 ]]></configfile> | 414 ]]></configfile> |
| 510 </configfiles> | 415 </configfiles> |
| 511 <inputs> | 416 <inputs> |
| 512 <param name="infile" type="data" format="imzml,rdata,danalyze75" | 417 <param name="infile" type="data" format="imzml,rdata,danalyze75" |
| 513 label="MSI rawdata as imzml, analyze7.5 or Cardinal MSImageSet saved as RData" | 418 label="MSI data as imzml, analyze7.5 or Cardinal MSImageSet saved as RData" |
| 514 help="load imzml and ibd file by uploading composite datatype imzml"/> | 419 help="load imzml and ibd file by uploading composite datatype imzml"/> |
| 420 <param name="accuracy" type="float" value="50" label="Only for processed imzML files: enter mass accuracy to which the m/z values will be binned" help="This should be set to the native accuracy of the mass spectrometer, if known"/> | |
| 421 <param name="units" display="radio" type="select" label="Only for processed imzML files: unit of the mass accuracy" help="either m/z or ppm"> | |
| 422 <option value="mz" >mz</option> | |
| 423 <option value="ppm" selected="True" >ppm</option> | |
| 424 </param> | |
| 515 <repeat name="methods" title="Preprocessing" min="1" max="50"> | 425 <repeat name="methods" title="Preprocessing" min="1" max="50"> |
| 516 <conditional name="methods_conditional"> | 426 <conditional name="methods_conditional"> |
| 517 <param name="preprocessing_method" type="select" label="Select the preprocessing methods you want to apply"> | 427 <param name="preprocessing_method" type="select" label="Select the preprocessing methods you want to apply"> |
| 518 <option value="Normalization" selected="True">Normalization to TIC</option> | 428 <option value="Normalization" selected="True">Normalization to TIC</option> |
| 519 <option value="Baseline_reduction">Baseline Reduction</option> | 429 <option value="Baseline_reduction">Baseline Reduction</option> |
| 520 <option value="Smoothing">Peak smoothing</option> | 430 <option value="Smoothing">Peak smoothing</option> |
| 521 <option value="Peak_picking">Peak picking</option> | 431 <option value="Peak_picking">Peak picking</option> |
| 522 <option value="Peak_alignment">Peak alignment</option> | 432 <option value="Peak_alignment">Peak alignment</option> |
| 523 <option value="Peak_filtering">Peak filtering</option> | 433 <option value="Peak_filtering">Peak filtering</option> |
| 524 <option value="Data_reduction">Data reduction</option> | 434 <option value="Data_reduction">Data reduction</option> |
| 525 <!--option value="Transformation">Transformation</option--> | 435 <option value="Transformation">Transformation</option> |
| 526 | |
| 527 </param> | 436 </param> |
| 528 <when value="Normalization"/> | 437 <when value="Normalization"/> |
| 529 <when value="Baseline_reduction"> | 438 <when value="Baseline_reduction"> |
| 530 <param name="blocks_baseline" type="integer" value="50" | 439 <param name="blocks_baseline" type="integer" value="50" |
| 531 label="Blocks"/> | 440 label="Blocks"/> |
| 667 </when> | 576 </when> |
| 668 </conditional> | 577 </conditional> |
| 669 </when> | 578 </when> |
| 670 </conditional> | 579 </conditional> |
| 671 </when> | 580 </when> |
| 672 <!--when value="Transformation"> | 581 <when value="Transformation"> |
| 673 <conditional name="transf_conditional"> | 582 <conditional name="transf_conditional"> |
| 674 <param name="trans_type" type="select" label="Choose which intensity transformation you want to apply" help="logarithm base 2 (log2) or squareroot (sqrt)"> | 583 <param name="trans_type" type="select" label="Choose which intensity transformation you want to apply" help="logarithm base 2 (log2) or squareroot (sqrt)"> |
| 675 <option value="log2" selected="True">log2</option> | 584 <option value="log2" selected="True">log2</option> |
| 676 <option value="sqrt">sqrt</option> | 585 <option value="sqrt">sqrt</option> |
| 677 </param> | 586 </param> |
| 678 <when value="log2"/> | 587 <when value="log2"/> |
| 679 <when value="sqrt"/> | 588 <when value="sqrt"/> |
| 680 </conditional> | 589 </conditional> |
| 681 </when--> | 590 </when> |
| 682 </conditional> | 591 </conditional> |
| 683 </repeat> | 592 </repeat> |
| 684 <conditional name="outputs"> | 593 <param name="summary_type" type="select" display="checkboxes" multiple="true" label="Summarize all pixels of a sample and calculate the mean, median or standard deviation"> |
| 685 <param name="outputs_select" type="select" label="Quality control output"> | 594 <option value="mean">mean</option> |
| 686 <option value="quality_control" selected="True">yes</option> | 595 <option value="median">median</option> |
| 687 <option value="no_quality_control">no</option> | 596 <option value="sd">standard deviation</option> |
| 688 </param> | 597 </param> |
| 689 <when value="quality_control"> | 598 <param name="output_matrix" type="boolean" label="Intensity matrix output"/> |
| 690 <param name="calibrant_file" type="data" format="tabular" | |
| 691 label="Provide a list of m/z, which will be plotted in the quality control report" | |
| 692 help="Use internal calibrant m/z"/> | |
| 693 <param name="calibrants_column" data_ref="calibrant_file" label="Column with m/z" type="data_column"/> | |
| 694 <param name="plusminus_dalton" value="0.25" type="text" label="M/z range" help="Plusminus m/z window in Dalton"/> | |
| 695 </when> | |
| 696 <when value="no_quality_control"/> | |
| 697 </conditional> | |
| 698 <param name="output_matrix" type="boolean" display="radio" label="Intensity matrix output"/> | |
| 699 </inputs> | 599 </inputs> |
| 700 <outputs> | 600 <outputs> |
| 701 <data format="rdata" name="msidata_preprocessed" label="$infile.display_name preprocessed"/> | 601 <data format="rdata" name="msidata_preprocessed" label="$infile.display_name preprocessed"/> |
| 702 <data format="pdf" name="QC_plots" from_work_dir="Preprocessing.pdf" label = "$infile.display_name preprocessed_QC"> | 602 <data format="pdf" name="QC_plots" from_work_dir="Preprocessing.pdf" label = "$infile.display_name preprocessed_QC"/> |
| 703 <filter>outputs["outputs_select"] == "quality_control"</filter> | 603 <data format="tabular" name="summarized_output_mean" label="$infile.display_name mean_matrix"> |
| 604 <filter>summary_type and "mean" in summary_type</filter> | |
| 605 </data> | |
| 606 <data format="tabular" name="summarized_output_median" label="$infile.display_name median_matrix"> | |
| 607 <filter>summary_type and "median" in summary_type</filter> | |
| 608 </data> | |
| 609 <data format="tabular" name="summarized_output_sd" label="$infile.display_name sd_matrix"> | |
| 610 <filter>summary_type and "sd" in summary_type</filter> | |
| 704 </data> | 611 </data> |
| 705 <data format="tabular" name="matrixasoutput" label="$infile.display_name preprocessed_matrix"> | 612 <data format="tabular" name="matrixasoutput" label="$infile.display_name preprocessed_matrix"> |
| 706 <filter>output_matrix</filter> | 613 <filter>output_matrix</filter> |
| 707 </data> | 614 </data> |
| 708 </outputs> | 615 </outputs> |
| 709 <tests> | 616 <tests> |
| 710 <test expect_num_outputs="2"> | 617 <test expect_num_outputs="3"> |
| 711 <param name="infile" value="" ftype="imzml"> | 618 <param name="infile" value="" ftype="imzml"> |
| 712 <composite_data value="Example_Continuous.imzML"/> | 619 <composite_data value="Example_Continuous.imzML"/> |
| 713 <composite_data value="Example_Continuous.ibd"/> | 620 <composite_data value="Example_Continuous.ibd"/> |
| 714 </param> | 621 </param> |
| 715 <repeat name="methods"> | 622 <repeat name="methods"> |
| 747 <conditional name="methods_conditional"> | 654 <conditional name="methods_conditional"> |
| 748 <param name="preprocessing_method" value="Peak_filtering"/> | 655 <param name="preprocessing_method" value="Peak_filtering"/> |
| 749 <param name="frequ_filtering" value="2"/> | 656 <param name="frequ_filtering" value="2"/> |
| 750 </conditional> | 657 </conditional> |
| 751 </repeat> | 658 </repeat> |
| 752 <!--repeat name="methods"> | 659 <repeat name="methods"> |
| 753 <conditional name="methods_conditional"> | 660 <conditional name="methods_conditional"> |
| 754 <param name="preprocessing_method" value="Transformation"/> | 661 <param name="preprocessing_method" value="Transformation"/> |
| 755 <conditional name="transf_conditional"> | 662 <conditional name="transf_conditional"> |
| 756 <param name="trans_type" value="sqrt"/> | 663 <param name="trans_type" value="sqrt"/> |
| 757 </conditional> | 664 </conditional> |
| 758 </conditional> | 665 </conditional> |
| 759 </repeat--> | 666 </repeat> |
| 760 <param name="outputs_select" value="no_quality_control"/> | |
| 761 <param name="output_matrix" value="True"/> | 667 <param name="output_matrix" value="True"/> |
| 762 <output name="msidata_preprocessed" file="preprocessing_results1.RData" compare="sim_size"/> | 668 <output name="msidata_preprocessed" file="preprocessing_results1.RData" compare="sim_size"/> |
| 763 <output name="matrixasoutput" file="preprocessing_results1.txt"/> | 669 <output name="matrixasoutput" file="preprocessing_results1.txt"/> |
| 670 <output name="QC_plots" file="preprocessing_results1.pdf" compare="sim_size"/> | |
| 764 </test> | 671 </test> |
| 765 <test expect_num_outputs="3"> | 672 <test expect_num_outputs="4"> |
| 766 <param name="infile" value="preprocessed.RData" ftype="rdata"/> | 673 <param name="infile" value="123_combined.RData" ftype="rdata"/> |
| 767 <repeat name="methods"> | 674 <repeat name="methods"> |
| 768 <conditional name="methods_conditional"> | 675 <conditional name="methods_conditional"> |
| 769 <param name="preprocessing_method" value="Peak_picking"/> | 676 <param name="preprocessing_method" value="Peak_picking"/> |
| 770 <param name="blocks_picking" value="3"/> | 677 <param name="blocks_picking" value="3"/> |
| 771 <param name="window_picking" value="5"/> | 678 <param name="window_picking" value="5"/> |
| 781 <conditional name="methods_for_alignment"> | 688 <conditional name="methods_for_alignment"> |
| 782 <param name="alignment_method" value="DP"/> | 689 <param name="alignment_method" value="DP"/> |
| 783 </conditional> | 690 </conditional> |
| 784 </conditional> | 691 </conditional> |
| 785 </repeat> | 692 </repeat> |
| 786 <param name="outputs_select" value="quality_control"/> | 693 <param name="summary_type" value="median,sd"/> |
| 787 <param name="calibrant_file" ftype="tabular" value="inputcalibrantfile1.tabular"/> | |
| 788 <param name="calibrants_column" value="1"/> | |
| 789 <param name="plusminus_dalton" value="0.25"/> | |
| 790 <param name="output_matrix" value="True"/> | |
| 791 <output name="msidata_preprocessed" file="preprocessing_results2.RData" compare="sim_size"/> | 694 <output name="msidata_preprocessed" file="preprocessing_results2.RData" compare="sim_size"/> |
| 792 <output name="matrixasoutput" file="preprocessing_results2.txt" lines_diff="2"/> | 695 <output name="summarized_output_median" file="preprocessing_median2.txt" lines_diff="2"/> |
| 696 <output name="summarized_output_sd" file="preprocessing_sd2.txt" lines_diff="2"/> | |
| 793 <output name="QC_plots" file="preprocessing_results2.pdf" compare="sim_size"/> | 697 <output name="QC_plots" file="preprocessing_results2.pdf" compare="sim_size"/> |
| 794 </test> | 698 </test> |
| 795 <test expect_num_outputs="2"> | 699 <test expect_num_outputs="3"> |
| 796 <param name="infile" value="" ftype="analyze75"> | 700 <param name="infile" value="" ftype="analyze75"> |
| 797 <composite_data value="Analyze75.hdr"/> | 701 <composite_data value="Analyze75.hdr"/> |
| 798 <composite_data value="Analyze75.img"/> | 702 <composite_data value="Analyze75.img"/> |
| 799 <composite_data value="Analyze75.t2m"/> | 703 <composite_data value="Analyze75.t2m"/> |
| 800 </param> | 704 </param> |
| 817 <conditional name="methods_for_alignment"> | 721 <conditional name="methods_for_alignment"> |
| 818 <param name="alignment_method" value="diff"/> | 722 <param name="alignment_method" value="diff"/> |
| 819 </conditional> | 723 </conditional> |
| 820 </conditional> | 724 </conditional> |
| 821 </repeat> | 725 </repeat> |
| 822 <param name="outputs_select" value="quality_control"/> | 726 <param name="summary_type" value="mean"/> |
| 823 <param name="calibrant_file" ftype="tabular" value="inputcalibrantfile2.tabular"/> | |
| 824 <param name="calibrants_column" value="1"/> | |
| 825 <param name="plusminus_dalton" value="0.25"/> | |
| 826 <output name="msidata_preprocessed" file="preprocessing_results3.RData" compare="sim_size"/> | 727 <output name="msidata_preprocessed" file="preprocessing_results3.RData" compare="sim_size"/> |
| 827 <output name="QC_plots" file="preprocessing_results3.pdf" compare="sim_size"/> | 728 <output name="QC_plots" file="preprocessing_results3.pdf" compare="sim_size"/> |
| 729 <output name="summarized_output_mean" file="preprocessing_mean3.txt" lines_diff="2"/> | |
| 828 </test> | 730 </test> |
| 829 <test expect_num_outputs="2"> | 731 <test expect_num_outputs="3"> |
| 830 <param name="infile" value="" ftype="analyze75"> | 732 <param name="infile" value="" ftype="analyze75"> |
| 831 <composite_data value="Analyze75.hdr"/> | 733 <composite_data value="Analyze75.hdr"/> |
| 832 <composite_data value="Analyze75.img"/> | 734 <composite_data value="Analyze75.img"/> |
| 833 <composite_data value="Analyze75.t2m"/> | 735 <composite_data value="Analyze75.t2m"/> |
| 834 </param> | 736 </param> |
| 841 <conditional name="methods_conditional"> | 743 <conditional name="methods_conditional"> |
| 842 <param name="preprocessing_method" value="Data_reduction"/> | 744 <param name="preprocessing_method" value="Data_reduction"/> |
| 843 <param name="bin_width" value="0.1"/> | 745 <param name="bin_width" value="0.1"/> |
| 844 </conditional> | 746 </conditional> |
| 845 </repeat> | 747 </repeat> |
| 846 <param name="outputs_select" value="no_quality_control"/> | |
| 847 <param name="output_matrix" value="True"/> | 748 <param name="output_matrix" value="True"/> |
| 848 <output name="msidata_preprocessed" file="preprocessing_results4.RData" compare="sim_size"/> | 749 <output name="msidata_preprocessed" file="preprocessing_results4.RData" compare="sim_size"/> |
| 849 <output name="matrixasoutput" file="preprocessing_results4.txt"/> | 750 <output name="matrixasoutput" file="preprocessing_results4.txt"/> |
| 751 <output name="QC_plots" file="preprocessing_results4.pdf" compare="sim_size"/> | |
| 850 </test> | 752 </test> |
| 851 <test expect_num_outputs="3"> | 753 <test expect_num_outputs="2"> |
| 852 <param name="infile" value="" ftype="imzml"> | 754 <param name="infile" value="" ftype="imzml"> |
| 853 <composite_data value="Example_Continuous.imzML"/> | 755 <composite_data value="Example_Continuous.imzML"/> |
| 854 <composite_data value="Example_Continuous.ibd"/> | 756 <composite_data value="Example_Continuous.ibd"/> |
| 855 </param> | 757 </param> |
| 856 <repeat name="methods"> | 758 <repeat name="methods"> |
| 860 <param name="reduction_method" value="resample"/> | 762 <param name="reduction_method" value="resample"/> |
| 861 <param name="step_width" value="0.1"/> | 763 <param name="step_width" value="0.1"/> |
| 862 </conditional> | 764 </conditional> |
| 863 </conditional> | 765 </conditional> |
| 864 </repeat> | 766 </repeat> |
| 865 <param name="outputs_select" value="quality_control"/> | 767 <output name="msidata_preprocessed" file="preprocessing_results5.RData" compare="sim_size"/> |
| 866 <param name="calibrant_file" ftype="tabular" value="inputcalibrantfile1.tabular"/> | |
| 867 <param name="calibrants_column" value="1"/> | |
| 868 <param name="plusminus_dalton" value="0.25"/> | |
| 869 <param name="output_matrix" value="True"/> | |
| 870 <output name="msidata_preprocessed" file="preprocessing_results5.RData" compare="sim_size"/> | |
| 871 <output name="matrixasoutput" file="preprocessing_results5.txt"/> | |
| 872 <output name="QC_plots" file="preprocessing_results5.pdf" compare="sim_size"/> | 768 <output name="QC_plots" file="preprocessing_results5.pdf" compare="sim_size"/> |
| 873 </test> | 769 </test> |
| 874 </tests> | 770 </tests> |
| 875 <help> | 771 <help> |
| 876 <