Mercurial > repos > galaxyp > msi_preprocessing
comparison msi_preprocessing.xml @ 7:1525c00f4e2b draft
planemo upload for repository https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/msi_preprocessing commit 8087490eb4dcaf4ead0f03eae4126780d21e5503
| author | galaxyp |
|---|---|
| date | Fri, 06 Jul 2018 14:11:35 -0400 |
| parents | 82a0eba2e3af |
| children | 761852b6b3b8 |
comparison
equal
deleted
inserted
replaced
| 6:82a0eba2e3af | 7:1525c00f4e2b |
|---|---|
| 1 <tool id="mass_spectrometry_imaging_preprocessing" name="MSI preprocessing" version="1.10.0.3"> | 1 <tool id="mass_spectrometry_imaging_preprocessing" name="MSI preprocessing" version="1.10.0.4"> |
| 2 <description> | 2 <description> |
| 3 mass spectrometry imaging preprocessing | 3 mass spectrometry imaging preprocessing |
| 4 </description> | 4 </description> |
| 5 <requirements> | 5 <requirements> |
| 6 <requirement type="package" version="1.10.0">bioconductor-cardinal</requirement> | 6 <requirement type="package" version="1.10.0">bioconductor-cardinal</requirement> |
| 36 | 36 |
| 37 #if $infile.ext == 'imzml' | 37 #if $infile.ext == 'imzml' |
| 38 #if str($processed_cond.processed_file) == "processed": | 38 #if str($processed_cond.processed_file) == "processed": |
| 39 msidata <- readImzML('infile', mass.accuracy=$processed_cond.accuracy, units.accuracy = "$processed_cond.units") | 39 msidata <- readImzML('infile', mass.accuracy=$processed_cond.accuracy, units.accuracy = "$processed_cond.units") |
| 40 #else | 40 #else |
| 41 msidata <- readImzML('infile') | 41 msidata <- readImzML('infile', attach.only=TRUE) |
| 42 #end if | 42 #end if |
| 43 #elif $infile.ext == 'analyze75' | 43 #elif $infile.ext == 'analyze75' |
| 44 msidata = readAnalyze('infile') | 44 msidata = readAnalyze('infile', attach.only=TRUE) |
| 45 #else | 45 #else |
| 46 load('infile.RData') | 46 load('infile.RData') |
| 47 #end if | 47 #end if |
| 48 | |
| 49 print(paste0("Number of NA in input file: ",sum(is.na(spectra(msidata)[])))) | |
| 48 | 50 |
| 49 ## function to later read RData reference files in | 51 ## function to later read RData reference files in |
| 50 | 52 |
| 51 loadRData <- function(fileName){ | 53 loadRData <- function(fileName){ |
| 52 #loads an RData file, and returns it | 54 #loads an RData file, and returns it |
| 53 load(fileName) | 55 load(fileName) |
| 54 get(ls()[ls() != "fileName"]) | 56 get(ls()[ls() != "fileName"]) |
| 55 } | 57 } |
| 56 | 58 |
| 57 ######################### preparations for QC report ################# | 59 if (sum(spectra(msidata)[]>0, na.rm=TRUE)> 0){ |
| 58 | 60 ######################### preparations for QC report ################# |
| 59 maxfeatures = length(features(msidata)) | 61 |
| 60 medianpeaks = median(colSums(spectra(msidata)[]>0)) | 62 maxfeatures = length(features(msidata)) |
| 61 medint = round(median(spectra(msidata)[]), digits=2) | 63 medianpeaks = median(colSums(spectra(msidata)[]>0, na.rm=TRUE)) |
| 62 TICs = round(mean(colSums(spectra(msidata)[])), digits=1) | 64 medint = round(median(spectra(msidata)[],na.rm=TRUE), digits=2) |
| 63 QC_numbers= data.frame(inputdata = c(maxfeatures, medianpeaks, medint, TICs)) | 65 TICs = round(mean(colSums(spectra(msidata)[], na.rm=TRUE)), digits=1) |
| 64 vectorofactions = "inputdata" | 66 QC_numbers= data.frame(inputdata = c(maxfeatures, medianpeaks, medint, TICs)) |
| 65 | 67 vectorofactions = "inputdata" |
| 66 ############################### Preprocessing steps ########################### | 68 |
| 67 ############################################################################### | 69 ############################### Preprocessing steps ########################### |
| 68 | 70 ############################################################################### |
| 69 #for $method in $methods: | 71 |
| 70 | 72 #for $method in $methods: |
| 71 ############################### Normalization ########################### | 73 |
| 72 | 74 ############################### Normalization ########################### |
| 73 #if str( $method.methods_conditional.preprocessing_method ) == 'Normalization': | 75 |
| 74 print('Normalization') | 76 #if str( $method.methods_conditional.preprocessing_method ) == 'Normalization': |
| 75 ##normalization | 77 print('Normalization') |
| 76 | 78 ##normalization |
| 77 msidata = normalize(msidata, method="tic") | 79 |
| 78 | 80 msidata = normalize(msidata, method="tic") |
| 79 ############################### QC ########################### | 81 |
| 80 | 82 ############################### QC ########################### |
| 81 maxfeatures = length(features(msidata)) | 83 |
| 82 medianpeaks = median(colSums(spectra(msidata)[]>0)) | 84 maxfeatures = length(features(msidata)) |
| 83 medint = round(median(spectra(msidata)[]), digits=2) | 85 medianpeaks = median(colSums(spectra(msidata)[]>0, na.rm=TRUE),) |
| 84 TICs = round(mean(colSums(spectra(msidata)[])), digits=1) | 86 medint = round(median(spectra(msidata)[], na.rm=TRUE), digits=2) |
| 85 normalized = c(maxfeatures, medianpeaks, medint, TICs) | 87 TICs = round(mean(colSums(spectra(msidata)[], na.rm=TRUE)), digits=1) |
| 86 QC_numbers= cbind(QC_numbers, normalized) | 88 normalized = c(maxfeatures, medianpeaks, medint, TICs) |
| 87 vectorofactions = append(vectorofactions, "normalized") | 89 QC_numbers= cbind(QC_numbers, normalized) |
| 88 | 90 vectorofactions = append(vectorofactions, "normalized") |
| 89 ############################### Baseline reduction ########################### | 91 |
| 90 | 92 ############################### Baseline reduction ########################### |
| 91 #elif str( $method.methods_conditional.preprocessing_method ) == 'Baseline_reduction': | 93 |
| 92 print('Baseline_reduction') | 94 #elif str( $method.methods_conditional.preprocessing_method ) == 'Baseline_reduction': |
| 93 ##baseline reduction | 95 print('Baseline_reduction') |
| 94 | 96 ##baseline reduction |
| 95 msidata = reduceBaseline(msidata, method="median", blocks=$method.methods_conditional.blocks_baseline) | 97 |
| 96 | 98 msidata = reduceBaseline(msidata, method="median", blocks=$method.methods_conditional.blocks_baseline) |
| 97 ############################### QC ########################### | 99 |
| 98 | 100 ############################### QC ########################### |
| 99 maxfeatures = length(features(msidata)) | 101 |
| 100 medianpeaks = median(colSums(spectra(msidata)[]>0)) | 102 maxfeatures = length(features(msidata)) |
| 101 medint = round(median(spectra(msidata)[]), digits=2) | 103 medianpeaks = median(colSums(spectra(msidata)[]>0, na.rm=TRUE)) |
| 102 TICs = round(mean(colSums(spectra(msidata)[])), digits=1) | 104 medint = round(median(spectra(msidata)[], na.rm=TRUE), digits=2) |
| 103 baseline= c(maxfeatures, medianpeaks, medint, TICs) | 105 TICs = round(mean(colSums(spectra(msidata)[], na.rm=TRUE)), digits=1) |
| 104 QC_numbers= cbind(QC_numbers, baseline) | 106 baseline= c(maxfeatures, medianpeaks, medint, TICs) |
| 105 vectorofactions = append(vectorofactions, "baseline red.") | 107 QC_numbers= cbind(QC_numbers, baseline) |
| 106 | 108 vectorofactions = append(vectorofactions, "baseline red.") |
| 107 ############################### Smoothing ########################### | 109 |
| 108 | 110 ############################### Smoothing ########################### |
| 109 #elif str( $method.methods_conditional.preprocessing_method ) == 'Smoothing': | 111 |
| 110 print('Smoothing') | 112 #elif str( $method.methods_conditional.preprocessing_method ) == 'Smoothing': |
| 111 ## Smoothing | 113 print('Smoothing') |
| 112 | 114 ## Smoothing |
| 113 #if str( $method.methods_conditional.methods_for_smoothing.smoothing_method) == 'gaussian': | 115 |
| 114 print('gaussian smoothing') | 116 #if str( $method.methods_conditional.methods_for_smoothing.smoothing_method) == 'gaussian': |
| 115 | 117 print('gaussian smoothing') |
| 116 msidata = smoothSignal(msidata, method="$method.methods_conditional.methods_for_smoothing.smoothing_method", window=$method.methods_conditional.window_smoothing, sd = $method.methods_conditional.methods_for_smoothing.sd_gaussian) | 118 |
| 117 | 119 msidata = smoothSignal(msidata, method="$method.methods_conditional.methods_for_smoothing.smoothing_method", window=$method.methods_conditional.window_smoothing, sd = $method.methods_conditional.methods_for_smoothing.sd_gaussian) |
| 118 #elif str( $method.methods_conditional.methods_for_smoothing.smoothing_method) == 'sgolay': | 120 |
| 119 print('sgolay smoothing') | 121 #elif str( $method.methods_conditional.methods_for_smoothing.smoothing_method) == 'sgolay': |
| 120 | 122 print('sgolay smoothing') |
| 121 msidata = smoothSignal(msidata, method="$method.methods_conditional.methods_for_smoothing.smoothing_method", window=$method.methods_conditional.window_smoothing, order = $method.methods_conditional.methods_for_smoothing.order_of_filters) | 123 |
| 122 #elif str($method.methods_conditional.methods_for_smoothing.smoothing_method) == 'ma': | 124 msidata = smoothSignal(msidata, method="$method.methods_conditional.methods_for_smoothing.smoothing_method", window=$method.methods_conditional.window_smoothing, order = $method.methods_conditional.methods_for_smoothing.order_of_filters) |
| 123 print('sgolay smoothing') | 125 #elif str($method.methods_conditional.methods_for_smoothing.smoothing_method) == 'ma': |
| 124 | 126 print('sgolay smoothing') |
| 125 msidata = smoothSignal(msidata, method="$method.methods_conditional.methods_for_smoothing.smoothing_method", window=$method.methods_conditional.window_smoothing, coef = $method.methods_conditional.methods_for_smoothing.coefficients_ma_filter) | 127 |
| 126 | 128 msidata = smoothSignal(msidata, method="$method.methods_conditional.methods_for_smoothing.smoothing_method", window=$method.methods_conditional.window_smoothing, coef = $method.methods_conditional.methods_for_smoothing.coefficients_ma_filter) |
| 127 #end if | |
| 128 | |
| 129 ############################### QC ########################### | |
| 130 | |
| 131 maxfeatures = length(features(msidata)) | |
| 132 medianpeaks = median(colSums(spectra(msidata)[]>0)) | |
| 133 medint = round(median(spectra(msidata)[]), digits=2) | |
| 134 TICs = round(mean(colSums(spectra(msidata)[])), digits=1) | |
| 135 smoothed= c(maxfeatures, medianpeaks, medint, TICs) | |
| 136 QC_numbers= cbind(QC_numbers, smoothed) | |
| 137 vectorofactions = append(vectorofactions, "smoothed") | |
| 138 | |
| 139 ############################### Peak picking ########################### | |
| 140 | |
| 141 #elif str( $method.methods_conditional.preprocessing_method) == 'Peak_picking': | |
| 142 print('Peak_picking') | |
| 143 ## Peakpicking | |
| 144 | |
| 145 #if str( $method.methods_conditional.methods_for_picking.picking_method) == 'adaptive': | |
| 146 print('adaptive peakpicking') | |
| 147 | |
| 148 msidata = peakPick(msidata, window = $method.methods_conditional.window_picking, blocks = $method.methods_conditional.blocks_picking, method='$method.methods_conditional.methods_for_picking.picking_method', SNR=$method.methods_conditional.SNR_picking_method, spar=$method.methods_conditional.methods_for_picking.spar_picking) | |
| 149 | |
| 150 #elif str( $method.methods_conditional.methods_for_picking.picking_method) == 'limpic': | |
| 151 print('limpic peakpicking') | |
| 152 | |
| 153 msidata = peakPick(msidata, window = $method.methods_conditional.window_picking, blocks = $method.methods_conditional.blocks_picking, method='$method.methods_conditional.methods_for_picking.picking_method', SNR=$method.methods_conditional.SNR_picking_method, thresh=$method.methods_conditional.methods_for_picking.tresh_picking) | |
| 154 | |
| 155 #elif str( $method.methods_conditional.methods_for_picking.picking_method) == 'simple': | |
| 156 print('simple peakpicking') | |
| 157 | |
| 158 msidata = peakPick(msidata, window = $method.methods_conditional.window_picking, blocks = $method.methods_conditional.blocks_picking, method='$method.methods_conditional.methods_for_picking.picking_method', SNR=$method.methods_conditional.SNR_picking_method) | |
| 159 | |
| 160 #end if | |
| 161 | |
| 162 ############################### QC ########################### | |
| 163 | |
| 164 maxfeatures = length(features(msidata)) | |
| 165 medianpeaks = median(colSums(spectra(msidata)[]>0)) | |
| 166 medint = round(median(spectra(msidata)[]), digits=2) | |
| 167 TICs = round(mean(colSums(spectra(msidata)[])), digits=1) | |
| 168 picked= c(maxfeatures, medianpeaks, medint, TICs) | |
| 169 QC_numbers= cbind(QC_numbers, picked) | |
| 170 vectorofactions = append(vectorofactions, "picked") | |
| 171 | |
| 172 ############################### Peak alignment ########################### | |
| 173 | |
| 174 #elif str( $method.methods_conditional.preprocessing_method ) == 'Peak_alignment': | |
| 175 print('Peak_alignment') | |
| 176 ## Peakalignment | |
| 177 | |
| 178 #if str( $method.methods_conditional.align_ref_type.align_reference_datatype) == 'align_noref': | |
| 179 | |
| 180 align_peak_reference = msidata | |
| 181 | |
| 182 #elif str( $method.methods_conditional.align_ref_type.align_reference_datatype) == 'align_table': | |
| 183 | |
| 184 align_reference_table = read.delim("$method.methods_conditional.align_ref_type.align_peaks_table", header = FALSE, stringsAsFactors = FALSE) | |
| 185 align_reference_column = align_reference_table[,$method.methods_conditional.align_ref_type.align_mass_column] | |
| 186 align_peak_reference = align_reference_column[align_reference_column>=min(mz(msidata)) & align_reference_column<=max(mz(msidata))] | |
| 187 if (length(align_peak_reference) == 0) | |
| 188 {align_peak_reference = 0} | |
| 189 | |
| 190 #elif str( $method.methods_conditional.align_ref_type.align_reference_datatype) == 'align_msidata_ref': | |
| 191 | |
| 192 align_peak_reference = loadRData('$method.methods_conditional.align_ref_type.align_peaks_msidata') | |
| 193 | |
| 194 #end if | |
| 195 | |
| 196 #if str( $method.methods_conditional.methods_for_alignment.alignment_method) == 'diff': | |
| 197 print('diff peakalignment') | |
| 198 | |
| 199 msidata = peakAlign(msidata, method='$method.methods_conditional.methods_for_alignment.alignment_method',diff.max =$method.methods_conditional.methods_for_alignment.value_diffalignment, units = "$method.methods_conditional.methods_for_alignment.units_diffalignment", ref=align_peak_reference) | |
| 200 | |
| 201 #elif str( $method.methods_conditional.methods_for_alignment.alignment_method) == 'DP': | |
| 202 print('DPpeakalignment') | |
| 203 | |
| 204 msidata = peakAlign(msidata, method='$method.methods_conditional.methods_for_alignment.alignment_method',gap = $method.methods_conditional.methods_for_alignment.gap_DPalignment, ref=align_peak_reference) | |
| 205 | |
| 206 #end if | |
| 207 | |
| 208 ############################### QC ########################### | |
| 209 | |
| 210 maxfeatures = length(features(msidata)) | |
| 211 medianpeaks = median(colSums(spectra(msidata)[]>0)) | |
| 212 medint = round(median(spectra(msidata)[]), digits=2) | |
| 213 TICs = round(mean(colSums(spectra(msidata)[])), digits=1) | |
| 214 aligned= c(maxfeatures, medianpeaks, medint, TICs) | |
| 215 QC_numbers= cbind(QC_numbers, aligned) | |
| 216 vectorofactions = append(vectorofactions, "aligned") | |
| 217 | |
| 218 ############################### Peak filtering ########################### | |
| 219 | |
| 220 #elif str( $method.methods_conditional.preprocessing_method) == 'Peak_filtering': | |
| 221 print('Peak_filtering') | |
| 222 | |
| 223 msidata = peakFilter(msidata, method='freq', freq.min = $method.methods_conditional.frequ_filtering) | |
| 224 | |
| 225 ############################### QC ########################### | |
| 226 | |
| 227 maxfeatures = length(features(msidata)) | |
| 228 medianpeaks = median(colSums(spectra(msidata)[]>0)) | |
| 229 medint = round(median(spectra(msidata)[]), digits=2) | |
| 230 TICs = round(mean(colSums(spectra(msidata)[])), digits=1) | |
| 231 filtered= c(maxfeatures, medianpeaks, medint, TICs) | |
| 232 QC_numbers= cbind(QC_numbers, filtered) | |
| 233 vectorofactions = append(vectorofactions, "filtered") | |
| 234 | |
| 235 ############################### Data reduction ########################### | |
| 236 | |
| 237 #elif str( $method.methods_conditional.preprocessing_method) == 'Data_reduction': | |
| 238 print('Data_reduction') | |
| 239 | |
| 240 #if str( $method.methods_conditional.methods_for_reduction.reduction_method) == 'bin': | |
| 241 print('bin reduction') | |
| 242 | |
| 243 msidata = reduceDimension(msidata, method="bin", width=$method.methods_conditional.methods_for_reduction.bin_width, units="$method.methods_conditional.methods_for_reduction.bin_units", fun=$method.methods_conditional.methods_for_reduction.bin_fun) | |
| 244 | |
| 245 #elif str( $method.methods_conditional.methods_for_reduction.reduction_method) == 'resample': | |
| 246 print('resample reduction') | |
| 247 | |
| 248 msidata = reduceDimension(msidata, method="resample", step=$method.methods_conditional.methods_for_reduction.resample_step) | |
| 249 | |
| 250 #elif str( $method.methods_conditional.methods_for_reduction.reduction_method) == 'peaks': | |
| 251 print('peaks reduction') | |
| 252 | |
| 253 #if str( $method.methods_conditional.methods_for_reduction.ref_type.reference_datatype) == 'table': | |
| 254 | |
| 255 reference_table = read.delim("$method.methods_conditional.methods_for_reduction.ref_type.peaks_table", header = FALSE, stringsAsFactors = FALSE) | |
| 256 reference_column = reference_table[,$method.methods_conditional.methods_for_reduction.ref_type.mass_column] | |
| 257 peak_reference = reference_column[reference_column>min(mz(msidata)) & reference_column<max(mz(msidata))] | |
| 258 | |
| 259 #elif str( $method.methods_conditional.methods_for_reduction.ref_type.reference_datatype) == 'msidata_ref': | |
| 260 | |
| 261 peak_reference = loadRData('$method.methods_conditional.methods_for_reduction.ref_type.peaks_msidata') | |
| 262 | 129 |
| 263 #end if | 130 #end if |
| 264 | 131 |
| 265 msidata = reduceDimension(msidata, method="peaks", ref=peak_reference, type="$method.methods_conditional.methods_for_reduction.peaks_type") | 132 ############################### QC ########################### |
| 266 #end if | 133 |
| 267 ############################### QC ########################### | 134 maxfeatures = length(features(msidata)) |
| 268 | 135 medianpeaks = median(colSums(spectra(msidata)[]>0, na.rm=TRUE)) |
| 269 maxfeatures = length(features(msidata)) | 136 medint = round(median(spectra(msidata)[], na.rm=TRUE), digits=2) |
| 270 medianpeaks = median(colSums(spectra(msidata)[]>0)) | 137 TICs = round(mean(colSums(spectra(msidata)[], na.rm=TRUE)), digits=1) |
| 271 medint = round(median(spectra(msidata)[]), digits=2) | 138 smoothed= c(maxfeatures, medianpeaks, medint, TICs) |
| 272 TICs = round(mean(colSums(spectra(msidata)[])), digits=1) | 139 QC_numbers= cbind(QC_numbers, smoothed) |
| 273 reduced= c(maxfeatures, medianpeaks, medint, TICs) | 140 vectorofactions = append(vectorofactions, "smoothed") |
| 274 QC_numbers= cbind(QC_numbers, reduced) | 141 |
| 275 vectorofactions = append(vectorofactions, "reduced") | 142 ############################### Peak picking ########################### |
| 276 | 143 |
| 277 ############################### Transformation ########################### | 144 #elif str( $method.methods_conditional.preprocessing_method) == 'Peak_picking': |
| 278 | 145 print('Peak_picking') |
| 279 #elif str( $method.methods_conditional.preprocessing_method) == 'Transformation': | 146 ## Peakpicking |
| 280 print('Transformation') | 147 |
| 281 | 148 |
| 282 #if str( $method.methods_conditional.transf_conditional.trans_type) == 'log2': | 149 ## remove duplicated coordinates, otherwise peak picking will fail |
| 283 print('log2 transformation') | 150 print(paste0(sum(duplicated(coord(msidata))), " coordinates were removed")) |
| 284 | 151 msidata <- msidata[,!duplicated(coord(msidata))] |
| 285 spectra(msidata)[][spectra(msidata)[] ==0] = NA | 152 |
| 286 print(paste0("Number of 0 which were converted into NA:",sum(is.na(spectra(msidata)[])))) | 153 #if str( $method.methods_conditional.methods_for_picking.picking_method) == 'adaptive': |
| 287 spectra(msidata)[] = log2(spectra(msidata)[]) | 154 print('adaptive peakpicking') |
| 288 | 155 |
| 289 #elif str( $method.methods_conditional.transf_conditional.trans_type) == 'sqrt': | 156 msidata = peakPick(msidata, window = $method.methods_conditional.window_picking, blocks = $method.methods_conditional.blocks_picking, method='$method.methods_conditional.methods_for_picking.picking_method', SNR=$method.methods_conditional.SNR_picking_method, spar=$method.methods_conditional.methods_for_picking.spar_picking) |
| 290 print('squareroot transformation') | 157 |
| 291 | 158 #elif str( $method.methods_conditional.methods_for_picking.picking_method) == 'limpic': |
| 292 spectra(msidata)[] = sqrt(spectra(msidata)[]) | 159 print('limpic peakpicking') |
| 293 | 160 |
| 294 #end if | 161 msidata = peakPick(msidata, window = $method.methods_conditional.window_picking, blocks = $method.methods_conditional.blocks_picking, method='$method.methods_conditional.methods_for_picking.picking_method', SNR=$method.methods_conditional.SNR_picking_method, thresh=$method.methods_conditional.methods_for_picking.tresh_picking) |
| 295 | 162 |
| 296 ############################### QC ########################### | 163 #elif str( $method.methods_conditional.methods_for_picking.picking_method) == 'simple': |
| 297 | 164 print('simple peakpicking') |
| 298 maxfeatures = length(features(msidata)) | 165 |
| 299 medianpeaks = median(colSums(spectra(msidata)[]>0), na.rm=TRUE) | 166 msidata = peakPick(msidata, window = $method.methods_conditional.window_picking, blocks = $method.methods_conditional.blocks_picking, method='$method.methods_conditional.methods_for_picking.picking_method', SNR=$method.methods_conditional.SNR_picking_method) |
| 300 medint = round(median(spectra(msidata)[], na.rm=TRUE), digits=2) | 167 |
| 301 TICs = round(mean(colSums(spectra(msidata)[]), na.rm=TRUE), digits=1) | 168 #end if |
| 302 transformed= c(maxfeatures, medianpeaks, medint, TICs) | 169 |
| 303 QC_numbers= cbind(QC_numbers, transformed) | 170 ############################### QC ########################### |
| 304 vectorofactions = append(vectorofactions, "transformed") | 171 |
| 305 | 172 maxfeatures = length(features(msidata)) |
| 306 #end if | 173 medianpeaks = median(colSums(spectra(msidata)[]>0, na.rm=TRUE)) |
| 307 #end for | 174 medint = round(median(spectra(msidata)[], na.rm=TRUE), digits=2) |
| 308 | 175 TICs = round(mean(colSums(spectra(msidata)[], na.rm=TRUE)), digits=1) |
| 309 ############# Outputs: summar matrix, RData, tabular and QC report ############# | 176 picked= c(maxfeatures, medianpeaks, medint, TICs) |
| 310 ################################################################################ | 177 QC_numbers= cbind(QC_numbers, picked) |
| 311 ## optional summarized matrix | 178 vectorofactions = append(vectorofactions, "picked") |
| 312 print('Summarized matrix') | 179 |
| 313 | 180 ############################### Peak alignment ########################### |
| 314 #if "mean" in str($summary_type).split(","): | 181 |
| 315 print("mean matrix") | 182 #elif str( $method.methods_conditional.preprocessing_method ) == 'Peak_alignment': |
| 316 if (!is.null(levels(msidata\$combined_sample))){ | 183 print('Peak_alignment') |
| 317 | 184 ## Peakalignment |
| 318 sample_matrix = matrix(,ncol=0, nrow=nrow(msidata)) | 185 |
| 319 count = 1 | 186 #if str( $method.methods_conditional.align_ref_type.align_reference_datatype) == 'align_noref': |
| 320 for (subsample in levels(msidata\$combined_sample)){ | 187 |
| 321 subsample_pixels = msidata[,msidata\$combined_sample == subsample] | 188 align_peak_reference = msidata |
| 322 subsample_calc = apply(spectra(subsample_pixels)[],1,mean, na.rm=TRUE) | 189 |
| 323 sample_matrix = cbind(sample_matrix, subsample_calc) | 190 #elif str( $method.methods_conditional.align_ref_type.align_reference_datatype) == 'align_table': |
| 324 count = count+1 | 191 |
| 192 align_reference_table = read.delim("$method.methods_conditional.align_ref_type.align_peaks_table", header = FALSE, stringsAsFactors = FALSE) | |
| 193 align_reference_column = align_reference_table[,$method.methods_conditional.align_ref_type.align_mass_column] | |
| 194 align_peak_reference = align_reference_column[align_reference_column>=min(mz(msidata)) & align_reference_column<=max(mz(msidata))] | |
| 195 if (length(align_peak_reference) == 0) | |
| 196 {align_peak_reference = 0} | |
| 197 | |
| 198 #elif str( $method.methods_conditional.align_ref_type.align_reference_datatype) == 'align_msidata_ref': | |
| 199 | |
| 200 align_peak_reference = loadRData('$method.methods_conditional.align_ref_type.align_peaks_msidata') | |
| 201 | |
| 202 #end if | |
| 203 | |
| 204 #if str( $method.methods_conditional.methods_for_alignment.alignment_method) == 'diff': | |
| 205 print('diff peakalignment') | |
| 206 | |
| 207 msidata = peakAlign(msidata, method='$method.methods_conditional.methods_for_alignment.alignment_method',diff.max =$method.methods_conditional.methods_for_alignment.value_diffalignment, units = "$method.methods_conditional.methods_for_alignment.units_diffalignment", ref=align_peak_reference) | |
| 208 | |
| 209 #elif str( $method.methods_conditional.methods_for_alignment.alignment_method) == 'DP': | |
| 210 print('DPpeakalignment') | |
| 211 | |
| 212 msidata = peakAlign(msidata, method='$method.methods_conditional.methods_for_alignment.alignment_method',gap = $method.methods_conditional.methods_for_alignment.gap_DPalignment, ref=align_peak_reference) | |
| 213 | |
| 214 #end if | |
| 215 | |
| 216 ############################### QC ########################### | |
| 217 | |
| 218 maxfeatures = length(features(msidata)) | |
| 219 medianpeaks = median(colSums(spectra(msidata)[]>0, na.rm=TRUE)) | |
| 220 medint = round(median(spectra(msidata)[], na.rm=TRUE), digits=2) | |
| 221 TICs = round(mean(colSums(spectra(msidata)[], na.rm=TRUE)), digits=1) | |
| 222 aligned= c(maxfeatures, medianpeaks, medint, TICs) | |
| 223 QC_numbers= cbind(QC_numbers, aligned) | |
| 224 vectorofactions = append(vectorofactions, "aligned") | |
| 225 | |
| 226 ############################### Peak filtering ########################### | |
| 227 | |
| 228 #elif str( $method.methods_conditional.preprocessing_method) == 'Peak_filtering': | |
| 229 print('Peak_filtering') | |
| 230 | |
| 231 msidata = peakFilter(msidata, method='freq', freq.min = $method.methods_conditional.frequ_filtering) | |
| 232 | |
| 233 ############################### QC ########################### | |
| 234 | |
| 235 maxfeatures = length(features(msidata)) | |
| 236 medianpeaks = median(colSums(spectra(msidata)[]>0, na.rm=TRUE)) | |
| 237 medint = round(median(spectra(msidata)[], na.rm=TRUE), digits=2) | |
| 238 TICs = round(mean(colSums(spectra(msidata)[], na.rm=TRUE)), digits=1) | |
| 239 filtered= c(maxfeatures, medianpeaks, medint, TICs) | |
| 240 QC_numbers= cbind(QC_numbers, filtered) | |
| 241 vectorofactions = append(vectorofactions, "filtered") | |
| 242 | |
| 243 ############################### Data reduction ########################### | |
| 244 | |
| 245 #elif str( $method.methods_conditional.preprocessing_method) == 'Data_reduction': | |
| 246 print('Data_reduction') | |
| 247 | |
| 248 #if str( $method.methods_conditional.methods_for_reduction.reduction_method) == 'bin': | |
| 249 print('bin reduction') | |
| 250 | |
| 251 msidata = reduceDimension(msidata, method="bin", width=$method.methods_conditional.methods_for_reduction.bin_width, units="$method.methods_conditional.methods_for_reduction.bin_units", fun=$method.methods_conditional.methods_for_reduction.bin_fun) | |
| 252 | |
| 253 #elif str( $method.methods_conditional.methods_for_reduction.reduction_method) == 'resample': | |
| 254 print('resample reduction') | |
| 255 | |
| 256 msidata = reduceDimension(msidata, method="resample", step=$method.methods_conditional.methods_for_reduction.resample_step) | |
| 257 | |
| 258 #elif str( $method.methods_conditional.methods_for_reduction.reduction_method) == 'peaks': | |
| 259 print('peaks reduction') | |
| 260 | |
| 261 #if str( $method.methods_conditional.methods_for_reduction.ref_type.reference_datatype) == 'table': | |
| 262 | |
| 263 reference_table = read.delim("$method.methods_conditional.methods_for_reduction.ref_type.peaks_table", header = FALSE, stringsAsFactors = FALSE) | |
| 264 reference_column = reference_table[,$method.methods_conditional.methods_for_reduction.ref_type.mass_column] | |
| 265 peak_reference = reference_column[reference_column>min(mz(msidata)) & reference_column<max(mz(msidata))] | |
| 266 | |
| 267 #elif str( $method.methods_conditional.methods_for_reduction.ref_type.reference_datatype) == 'msidata_ref': | |
| 268 | |
| 269 peak_reference = loadRData('$method.methods_conditional.methods_for_reduction.ref_type.peaks_msidata') | |
| 270 | |
| 271 #end if | |
| 272 | |
| 273 msidata = reduceDimension(msidata, method="peaks", ref=peak_reference, type="$method.methods_conditional.methods_for_reduction.peaks_type") | |
| 274 #end if | |
| 275 ############################### QC ########################### | |
| 276 | |
| 277 maxfeatures = length(features(msidata)) | |
| 278 medianpeaks = median(colSums(spectra(msidata)[]>0, na.rm=TRUE)) | |
| 279 medint = round(median(spectra(msidata)[], na.rm=TRUE), digits=2) | |
| 280 TICs = round(mean(colSums(spectra(msidata)[], na.rm=TRUE)), digits=1) | |
| 281 reduced= c(maxfeatures, medianpeaks, medint, TICs) | |
| 282 QC_numbers= cbind(QC_numbers, reduced) | |
| 283 vectorofactions = append(vectorofactions, "reduced") | |
| 284 | |
| 285 ############################### Transformation ########################### | |
| 286 | |
| 287 #elif str( $method.methods_conditional.preprocessing_method) == 'Transformation': | |
| 288 print('Transformation') | |
| 289 | |
| 290 #if str( $method.methods_conditional.transf_conditional.trans_type) == 'log2': | |
| 291 print('log2 transformation') | |
| 292 | |
| 293 spectra(msidata)[][spectra(msidata)[] ==0] = NA | |
| 294 print(paste0("Number of 0 which were converted into NA:",sum(is.na(spectra(msidata)[])))) | |
| 295 spectra(msidata)[] = log2(spectra(msidata)[]) | |
| 296 | |
| 297 #elif str( $method.methods_conditional.transf_conditional.trans_type) == 'sqrt': | |
| 298 print('squareroot transformation') | |
| 299 | |
| 300 spectra(msidata)[] = sqrt(spectra(msidata)[]) | |
| 301 | |
| 302 #end if | |
| 303 | |
| 304 ############################### QC ########################### | |
| 305 | |
| 306 maxfeatures = length(features(msidata)) | |
| 307 medianpeaks = median(colSums(spectra(msidata)[]>0, na.rm=TRUE)) | |
| 308 medint = round(median(spectra(msidata)[], na.rm=TRUE), digits=2) | |
| 309 TICs = round(mean(colSums(spectra(msidata)[], na.rm=TRUE)), digits=1) | |
| 310 transformed= c(maxfeatures, medianpeaks, medint, TICs) | |
| 311 QC_numbers= cbind(QC_numbers, transformed) | |
| 312 vectorofactions = append(vectorofactions, "transformed") | |
| 313 | |
| 314 #end if | |
| 315 #end for | |
| 316 | |
| 317 ############# Outputs: summar matrix, RData, tabular and QC report ############# | |
| 318 ################################################################################ | |
| 319 ## optional summarized matrix | |
| 320 print('Summarized matrix') | |
| 321 | |
| 322 #if "mean" in str($summary_type).split(","): | |
| 323 print("mean matrix") | |
| 324 if (!is.null(levels(msidata\$combined_sample))){ | |
| 325 | |
| 326 sample_matrix = matrix(,ncol=0, nrow=nrow(msidata)) | |
| 327 count = 1 | |
| 328 for (subsample in levels(msidata\$combined_sample)){ | |
| 329 subsample_pixels = msidata[,msidata\$combined_sample == subsample] | |
| 330 subsample_calc = apply(spectra(subsample_pixels)[],1,mean, na.rm=TRUE) | |
| 331 sample_matrix = cbind(sample_matrix, subsample_calc) | |
| 332 count = count+1 | |
| 333 } | |
| 334 rownames(sample_matrix) = mz(msidata) | |
| 335 colnames(sample_matrix) = levels(msidata\$combined_sample) | |
| 336 write.table(sample_matrix, file="$summarized_output_mean", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") | |
| 337 }else{ | |
| 338 full_sample_calc = as.data.frame(apply(spectra(msidata)[],1,mean, na.rm=TRUE)) | |
| 339 rownames(full_sample_calc) = mz(msidata) | |
| 340 colnames(full_sample_calc) = "$infile.display_name" | |
| 341 write.table(full_sample_calc, file="$summarized_output_mean", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") | |
| 325 } | 342 } |
| 326 rownames(sample_matrix) = mz(msidata) | 343 |
| 327 colnames(sample_matrix) = levels(msidata\$combined_sample) | 344 #end if |
| 328 write.table(sample_matrix, file="$summarized_output_mean", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") | 345 |
| 329 }else{ | 346 #if "median" in str($summary_type).split(","): |
| 330 full_sample_calc = as.data.frame(apply(spectra(msidata)[],1,mean, na.rm=TRUE)) | 347 print("median matrix") |
| 331 rownames(full_sample_calc) = mz(msidata) | 348 if (!is.null(levels(msidata\$combined_sample))){ |
| 332 colnames(full_sample_calc) = "$infile.display_name" | 349 sample_matrix = matrix(,ncol=0, nrow=nrow(msidata)) |
| 333 write.table(full_sample_calc, file="$summarized_output_mean", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") | 350 count = 1 |
| 334 } | 351 for (subsample in levels(msidata\$combined_sample)){ |
| 335 | 352 subsample_pixels = msidata[,msidata\$combined_sample == subsample] |
| 336 #end if | 353 subsample_calc = apply(spectra(subsample_pixels)[],1,median, na.rm=TRUE) |
| 337 | 354 sample_matrix = cbind(sample_matrix, subsample_calc) |
| 338 #if "median" in str($summary_type).split(","): | 355 count = count+1 |
| 339 print("median matrix") | 356 } |
| 340 if (!is.null(levels(msidata\$combined_sample))){ | 357 |
| 341 sample_matrix = matrix(,ncol=0, nrow=nrow(msidata)) | 358 rownames(sample_matrix) = mz(msidata) |
| 342 count = 1 | 359 colnames(sample_matrix) = levels(msidata\$combined_sample) |
| 343 for (subsample in levels(msidata\$combined_sample)){ | 360 write.table(sample_matrix, file="$summarized_output_median", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") |
| 344 subsample_pixels = msidata[,msidata\$combined_sample == subsample] | 361 }else{ |
| 345 subsample_calc = apply(spectra(subsample_pixels)[],1,median, na.rm=TRUE) | 362 full_sample_calc = as.data.frame(apply(spectra(msidata)[],1,median, na.rm=TRUE)) |
| 346 sample_matrix = cbind(sample_matrix, subsample_calc) | 363 rownames(full_sample_calc) = mz(msidata) |
| 347 count = count+1 | 364 colnames(full_sample_calc) = "$infile.display_name" |
| 365 write.table(full_sample_calc, file="$summarized_output_median", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") | |
| 348 } | 366 } |
| 349 | 367 #end if |
| 350 rownames(sample_matrix) = mz(msidata) | 368 |
| 351 colnames(sample_matrix) = levels(msidata\$combined_sample) | 369 #if "sd" in str($summary_type).split(","): |
| 352 write.table(sample_matrix, file="$summarized_output_median", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") | 370 print("sd matrix") |
| 353 }else{ | 371 if (!is.null(levels(msidata\$combined_sample))){ |
| 354 full_sample_calc = apply(spectra(msidata)[],1,median, na.rm=TRUE) | 372 sample_matrix = matrix(,ncol=0, nrow=nrow(msidata)) |
| 355 rownames(full_sample_calc) = mz(msidata) | 373 count = 1 |
| 356 colnames(full_sample_calc) = "$infile.display_name" | 374 for (subsample in levels(msidata\$combined_sample)){ |
| 357 write.table(full_sample_calc, file="$summarized_output_mean", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") | 375 subsample_pixels = msidata[,msidata\$combined_sample == subsample] |
| 358 } | 376 subsample_calc = apply(spectra(subsample_pixels)[],1,sd, na.rm=TRUE) |
| 359 #end if | 377 sample_matrix = cbind(sample_matrix, subsample_calc) |
| 360 | 378 count = count+1 |
| 361 #if "sd" in str($summary_type).split(","): | 379 } |
| 362 print("sd matrix") | 380 |
| 363 if (!is.null(levels(msidata\$combined_sample))){ | 381 rownames(sample_matrix) = mz(msidata) |
| 364 sample_matrix = matrix(,ncol=0, nrow=nrow(msidata)) | 382 colnames(sample_matrix) = levels(msidata\$combined_sample) |
| 365 count = 1 | 383 write.table(sample_matrix, file="$summarized_output_sd", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") |
| 366 for (subsample in levels(msidata\$combined_sample)){ | 384 }else{ |
| 367 subsample_pixels = msidata[,msidata\$combined_sample == subsample] | 385 |
| 368 subsample_calc = apply(spectra(subsample_pixels)[],1,sd, na.rm=TRUE) | 386 full_sample_calc = as.data.frame(apply(spectra(msidata)[],1,sd, na.rm=TRUE)) |
| 369 sample_matrix = cbind(sample_matrix, subsample_calc) | 387 rownames(full_sample_calc) = mz(msidata) |
| 370 count = count+1 | 388 colnames(full_sample_calc) = "$infile.display_name" |
| 389 write.table(full_sample_calc, file="$summarized_output_sd", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") | |
| 371 } | 390 } |
| 372 | 391 #end if |
| 373 rownames(sample_matrix) = mz(msidata) | 392 print(paste0("Number of NA in output file: ",sum(is.na(spectra(msidata)[])))) |
| 374 colnames(sample_matrix) = levels(msidata\$combined_sample) | 393 |
| 375 write.table(sample_matrix, file="$summarized_output_sd", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") | 394 ## save as (.RData) |
| 376 }else{ | 395 save(msidata, file="$msidata_preprocessed") |
| 377 full_sample_calc = apply(spectra(msidata)[],1,sd, na.rm=TRUE) | 396 |
| 378 rownames(full_sample_calc) = mz(msidata) | 397 ## save output matrix |
| 379 colnames(full_sample_calc) = "$infile.display_name" | 398 #if $output_matrix: |
| 380 write.table(full_sample_calc, file="$summarized_output_mean", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") | 399 |
| 381 } | 400 if (length(features(msidata))> 0 & length(pixels(msidata)) > 0){ |
| 382 #end if | 401 spectramatrix = spectra(msidata)[] |
| 383 | 402 spectramatrix = cbind(mz(msidata),spectramatrix) |
| 384 ## save as (.RData) | 403 newmatrix = rbind(c("mz | spectra", names(pixels(msidata))), spectramatrix) |
| 385 save(msidata, file="$msidata_preprocessed") | 404 write.table(newmatrix, file="$matrixasoutput", quote = FALSE, row.names = FALSE, col.names=FALSE, sep = "\t") |
| 386 | |
| 387 print(paste0("Number of NAs in intensity matrix: ", sum(is.na(spectra(msidata)[])))) | |
| 388 | |
| 389 ## save output matrix | |
| 390 #if $output_matrix: | |
| 391 | |
| 392 if (length(features(msidata))> 0) | |
| 393 { | |
| 394 ## save as intensity matrix | |
| 395 spectramatrix = spectra(msidata)[] | |
| 396 rownames(spectramatrix) = mz(msidata) | |
| 397 newmatrix = rbind(pixels(msidata), spectramatrix) | |
| 398 write.table(newmatrix[2:nrow(newmatrix),], file="$matrixasoutput", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") | |
| 399 | |
| 400 }else{ | 405 }else{ |
| 401 print("file has no features left") | 406 print("file has no features or pixels left") |
| 402 write.table(matrix(rownames(coord(msidata)), ncol=ncol(msidata), nrow=1), file="$matrixasoutput", quote = FALSE, row.names = FALSE, col.names=FALSE, sep = "\t") | |
| 403 } | 407 } |
| 404 | 408 #end if |
| 405 #end if | 409 |
| 406 | 410 ## save QC report |
| 407 ## save QC report | |
| 408 | 411 |
| 409 pdf("Preprocessing.pdf", fonts = "Times", pointsize = 12) | 412 pdf("Preprocessing.pdf", fonts = "Times", pointsize = 12) |
| 410 plot(0,type='n',axes=FALSE,ann=FALSE) | 413 plot(0,type='n',axes=FALSE,ann=FALSE) |
| 411 title(main=paste("Quality control during preprocessing \n", "Filename:", "$infile.display_name")) | 414 title(main=paste("Quality control during preprocessing \n", "Filename:", "$infile.display_name")) |
| 412 rownames(QC_numbers) = c("# features", "median # peaks", "median intensity", "median TIC") | 415 rownames(QC_numbers) = c("# features", "median # peaks", "median intensity", "median TIC") |
| 413 grid.table(t(QC_numbers)) | 416 grid.table(t(QC_numbers)) |
| 414 dev.off() | 417 dev.off() |
| 415 | 418 |
| 419 }else{ | |
| 420 print("inputfile has no intensities > 0") | |
| 421 } | |
| 422 | |
| 416 ]]></configfile> | 423 ]]></configfile> |
| 417 </configfiles> | 424 </configfiles> |
| 418 <inputs> | 425 <inputs> |
| 419 <param name="infile" type="data" format="imzml,rdata,danalyze75" | 426 <param name="infile" type="data" format="imzml,rdata,analyze75" |
| 420 label="MSI data as imzml, analyze7.5 or Cardinal MSImageSet saved as RData" | 427 label="MSI data as imzml, analyze7.5 or Cardinal MSImageSet saved as RData" |
| 421 help="load imzml and ibd file by uploading composite datatype imzml"/> | 428 help="load imzml and ibd file by uploading composite datatype imzml"/> |
| 422 <conditional name="processed_cond"> | 429 <conditional name="processed_cond"> |
| 423 <param name="processed_file" type="select" label="Is the input file a processed imzML file "> | 430 <param name="processed_file" type="select" label="Is the input file a processed imzML file "> |
| 424 <option value="no_processed" selected="True">not a processed imzML</option> | 431 <option value="no_processed" selected="True">not a processed imzML</option> |
| 608 </param> | 615 </param> |
| 609 <param name="output_matrix" type="boolean" label="Intensity matrix output"/> | 616 <param name="output_matrix" type="boolean" label="Intensity matrix output"/> |
| 610 </inputs> | 617 </inputs> |
| 611 <outputs> | 618 <outputs> |
| 612 <data format="rdata" name="msidata_preprocessed" label="$infile.display_name preprocessed"/> | 619 <data format="rdata" name="msidata_preprocessed" label="$infile.display_name preprocessed"/> |
| 613 <data format="pdf" name="QC_plots" from_work_dir="Preprocessing.pdf" label = "$infile.display_name preprocessed_QC"/> | 620 <data format="pdf" name="QC_overview" from_work_dir="Preprocessing.pdf" label = "$infile.display_name preprocessed_QC"/> |
| 614 <data format="tabular" name="summarized_output_mean" label="$infile.display_name mean_matrix"> | 621 <data format="tabular" name="summarized_output_mean" label="$infile.display_name mean_matrix"> |
| 615 <filter>summary_type and "mean" in summary_type</filter> | 622 <filter>summary_type and "mean" in summary_type</filter> |
| 616 </data> | 623 </data> |
| 617 <data format="tabular" name="summarized_output_median" label="$infile.display_name median_matrix"> | 624 <data format="tabular" name="summarized_output_median" label="$infile.display_name median_matrix"> |
| 618 <filter>summary_type and "median" in summary_type</filter> | 625 <filter>summary_type and "median" in summary_type</filter> |
| 676 </conditional> | 683 </conditional> |
| 677 </repeat> | 684 </repeat> |
| 678 <param name="output_matrix" value="True"/> | 685 <param name="output_matrix" value="True"/> |
| 679 <output name="msidata_preprocessed" file="preprocessing_results1.RData" compare="sim_size"/> | 686 <output name="msidata_preprocessed" file="preprocessing_results1.RData" compare="sim_size"/> |
| 680 <output name="matrixasoutput" file="preprocessing_results1.txt"/> | 687 <output name="matrixasoutput" file="preprocessing_results1.txt"/> |
| 681 <output name="QC_plots" file="preprocessing_results1.pdf" compare="sim_size"/> | 688 <output name="QC_overview" file="preprocessing_results1.pdf" compare="sim_size"/> |
| 682 </test> | 689 </test> |
| 683 <test expect_num_outputs="4"> | 690 <test expect_num_outputs="4"> |
| 684 <param name="infile" value="123_combined.RData" ftype="rdata"/> | 691 <param name="infile" value="123_combined.RData" ftype="rdata"/> |
| 685 <repeat name="methods"> | 692 <repeat name="methods"> |
| 686 <conditional name="methods_conditional"> | 693 <conditional name="methods_conditional"> |
| 703 </repeat> | 710 </repeat> |
| 704 <param name="summary_type" value="median,sd"/> | 711 <param name="summary_type" value="median,sd"/> |
| 705 <output name="msidata_preprocessed" file="preprocessing_results2.RData" compare="sim_size"/> | 712 <output name="msidata_preprocessed" file="preprocessing_results2.RData" compare="sim_size"/> |
| 706 <output name="summarized_output_median" file="preprocessing_median2.txt" lines_diff="2"/> | 713 <output name="summarized_output_median" file="preprocessing_median2.txt" lines_diff="2"/> |
| 707 <output name="summarized_output_sd" file="preprocessing_sd2.txt" lines_diff="2"/> | 714 <output name="summarized_output_sd" file="preprocessing_sd2.txt" lines_diff="2"/> |
| 708 <output name="QC_plots" file="preprocessing_results2.pdf" compare="sim_size"/> | 715 <output name="QC_overview" file="preprocessing_results2.pdf" compare="sim_size"/> |
| 709 </test> | 716 </test> |
| 710 <test expect_num_outputs="3"> | 717 <test expect_num_outputs="3"> |
| 711 <param name="infile" value="" ftype="analyze75"> | 718 <param name="infile" value="" ftype="analyze75"> |
| 712 <composite_data value="Analyze75.hdr"/> | 719 <composite_data value="Analyze75.hdr"/> |
| 713 <composite_data value="Analyze75.img"/> | 720 <composite_data value="Analyze75.img"/> |
| 734 </conditional> | 741 </conditional> |
| 735 </conditional> | 742 </conditional> |
| 736 </repeat> | 743 </repeat> |
| 737 <param name="summary_type" value="mean"/> | 744 <param name="summary_type" value="mean"/> |
| 738 <output name="msidata_preprocessed" file="preprocessing_results3.RData" compare="sim_size"/> | 745 <output name="msidata_preprocessed" file="preprocessing_results3.RData" compare="sim_size"/> |
| 739 <output name="QC_plots" file="preprocessing_results3.pdf" compare="sim_size"/> | 746 <output name="QC_overview" file="preprocessing_results3.pdf" compare="sim_size"/> |
| 740 <output name="summarized_output_mean" file="preprocessing_mean3.txt" lines_diff="2"/> | 747 <output name="summarized_output_mean" file="preprocessing_mean3.txt" lines_diff="2"/> |
| 741 </test> | 748 </test> |
| 742 <test expect_num_outputs="3"> | 749 <test expect_num_outputs="3"> |
| 743 <param name="infile" value="" ftype="analyze75"> | 750 <param name="infile" value="" ftype="analyze75"> |
| 744 <composite_data value="Analyze75.hdr"/> | 751 <composite_data value="Analyze75.hdr"/> |
| 757 </conditional> | 764 </conditional> |
| 758 </repeat> | 765 </repeat> |
| 759 <param name="output_matrix" value="True"/> | 766 <param name="output_matrix" value="True"/> |
| 760 <output name="msidata_preprocessed" file="preprocessing_results4.RData" compare="sim_size"/> | 767 <output name="msidata_preprocessed" file="preprocessing_results4.RData" compare="sim_size"/> |
| 761 <output name="matrixasoutput" file="preprocessing_results4.txt"/> | 768 <output name="matrixasoutput" file="preprocessing_results4.txt"/> |
| 762 <output name="QC_plots" file="preprocessing_results4.pdf" compare="sim_size"/> | 769 <output name="QC_overview" file="preprocessing_results4.pdf" compare="sim_size"/> |
| 763 </test> | 770 </test> |
| 764 <test expect_num_outputs="2"> | 771 <test expect_num_outputs="2"> |
| 765 <param name="infile" value="" ftype="imzml"> | 772 <param name="infile" value="" ftype="imzml"> |
| 766 <composite_data value="Example_Continuous.imzML"/> | 773 <composite_data value="Example_Continuous.imzML"/> |
| 767 <composite_data value="Example_Continuous.ibd"/> | 774 <composite_data value="Example_Continuous.ibd"/> |
| 774 <param name="step_width" value="0.1"/> | 781 <param name="step_width" value="0.1"/> |
| 775 </conditional> | 782 </conditional> |
| 776 </conditional> | 783 </conditional> |
| 777 </repeat> | 784 </repeat> |
| 778 <output name="msidata_preprocessed" file="preprocessing_results5.RData" compare="sim_size"/> | 785 <output name="msidata_preprocessed" file="preprocessing_results5.RData" compare="sim_size"/> |
| 779 <output name="QC_plots" file="preprocessing_results5.pdf" compare="sim_size"/> | 786 <output name="QC_overview" file="preprocessing_results5.pdf" compare="sim_size"/> |
| 780 </test> | 787 </test> |
| 781 </tests> | 788 </tests> |
| 782 <help> | 789 <help> |
| 783 <