Mercurial > repos > galaxyp > cardinal_preprocessing
comparison preprocessing.xml @ 3:0b6f4c09b6eb draft
planemo upload for repository https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/cardinal commit 2c4a1a862900b4efbc30824cbcb798f835b168b2
| author | galaxyp |
|---|---|
| date | Thu, 28 Feb 2019 09:19:20 -0500 |
| parents | f29109d0d353 |
| children | 58fb63423b0b |
comparison
equal
deleted
inserted
replaced
| 2:f29109d0d353 | 3:0b6f4c09b6eb |
|---|---|
| 58 pixelcount = ncol(msidata) | 58 pixelcount = ncol(msidata) |
| 59 minmz = round(min(mz(msidata)), digits=2) | 59 minmz = round(min(mz(msidata)), digits=2) |
| 60 maxmz = round(max(mz(msidata)), digits=2) | 60 maxmz = round(max(mz(msidata)), digits=2) |
| 61 QC_numbers= data.frame(inputdata = c(minmz, maxmz,maxfeatures, pixelcount)) | 61 QC_numbers= data.frame(inputdata = c(minmz, maxmz,maxfeatures, pixelcount)) |
| 62 vectorofactions = "inputdata" | 62 vectorofactions = "inputdata" |
| 63 plot(msidata, pixel = 1:pixelcount, main="Average spectrum of input file") | 63 ## Choose random spectra for QC plots |
| 64 random_spectra = sample(pixels(msidata), 4, replace=FALSE) | |
| 65 par(mfrow = c(2, 2), oma=c(0,0,2,0)) | |
| 66 for (random_sample in 1:length(random_spectra)){ | |
| 67 plot(msidata, pixel=random_spectra[random_sample], main=paste0("spectrum ", names(random_spectra)[random_sample]))} | |
| 68 title("Input spectra", outer=TRUE, line=0) | |
| 69 | |
| 64 | 70 |
| 65 ############################### Preprocessing steps ########################### | 71 ############################### Preprocessing steps ########################### |
| 66 ############################################################################### | 72 ############################################################################### |
| 67 | 73 |
| 68 #for $method in $methods: | 74 #for $method in $methods: |
| 82 minmz = round(min(mz(msidata)), digits=2) | 88 minmz = round(min(mz(msidata)), digits=2) |
| 83 maxmz = round(max(mz(msidata)), digits=2) | 89 maxmz = round(max(mz(msidata)), digits=2) |
| 84 normalized = c(minmz, maxmz,maxfeatures, pixelcount) | 90 normalized = c(minmz, maxmz,maxfeatures, pixelcount) |
| 85 QC_numbers= cbind(QC_numbers, normalized) | 91 QC_numbers= cbind(QC_numbers, normalized) |
| 86 vectorofactions = append(vectorofactions, "normalized") | 92 vectorofactions = append(vectorofactions, "normalized") |
| 87 plot(msidata, pixel = 1:pixelcount, main="Average spectrum after normalization") | 93 par(mfrow = c(2, 2), oma=c(0,0,2,0)) |
| 94 for (random_sample in 1:length(random_spectra)){ | |
| 95 plot(msidata, pixel=random_spectra[random_sample], main=paste0("spectrum ", names(random_spectra)[random_sample]))} | |
| 96 title("Spectra after normalization", outer=TRUE, line=0) | |
| 88 | 97 |
| 89 ############################### Baseline reduction ########################### | 98 ############################### Baseline reduction ########################### |
| 90 | 99 |
| 91 #elif str( $method.methods_conditional.preprocessing_method ) == 'Baseline_reduction': | 100 #elif str( $method.methods_conditional.preprocessing_method ) == 'Baseline_reduction': |
| 92 print('Baseline_reduction') | 101 print('Baseline_reduction') |
| 101 minmz = round(min(mz(msidata)), digits=2) | 110 minmz = round(min(mz(msidata)), digits=2) |
| 102 maxmz = round(max(mz(msidata)), digits=2) | 111 maxmz = round(max(mz(msidata)), digits=2) |
| 103 baseline = c(minmz, maxmz,maxfeatures, pixelcount) | 112 baseline = c(minmz, maxmz,maxfeatures, pixelcount) |
| 104 QC_numbers= cbind(QC_numbers, baseline) | 113 QC_numbers= cbind(QC_numbers, baseline) |
| 105 vectorofactions = append(vectorofactions, "baseline red.") | 114 vectorofactions = append(vectorofactions, "baseline red.") |
| 106 plot(msidata, pixel = 1:pixelcount, main="Average spectrum after baseline reduction") | 115 for (random_sample in 1:length(random_spectra)){ |
| 116 plot(msidata, pixel=random_spectra[random_sample], main=paste0("spectrum ", names(random_spectra)[random_sample]))} | |
| 117 title("Spectra after baseline reduction", outer=TRUE, line=0) | |
| 107 | 118 |
| 108 ############################### Smoothing ########################### | 119 ############################### Smoothing ########################### |
| 109 | 120 |
| 110 #elif str( $method.methods_conditional.preprocessing_method ) == 'Smoothing': | 121 #elif str( $method.methods_conditional.preprocessing_method ) == 'Smoothing': |
| 111 print('Smoothing') | 122 print('Smoothing') |
| 134 minmz = round(min(mz(msidata)), digits=2) | 145 minmz = round(min(mz(msidata)), digits=2) |
| 135 maxmz = round(max(mz(msidata)), digits=2) | 146 maxmz = round(max(mz(msidata)), digits=2) |
| 136 smoothed = c(minmz, maxmz,maxfeatures, pixelcount) | 147 smoothed = c(minmz, maxmz,maxfeatures, pixelcount) |
| 137 QC_numbers= cbind(QC_numbers, smoothed) | 148 QC_numbers= cbind(QC_numbers, smoothed) |
| 138 vectorofactions = append(vectorofactions, "smoothed") | 149 vectorofactions = append(vectorofactions, "smoothed") |
| 139 plot(msidata, pixel = 1:pixelcount, main="Average spectrum after smoothing") | 150 for (random_sample in 1:length(random_spectra)){ |
| 151 plot(msidata, pixel=random_spectra[random_sample], main=paste0("spectrum ", names(random_spectra)[random_sample]))} | |
| 152 title("Spectra after smoothing", outer=TRUE, line=0) | |
| 140 | 153 |
| 141 ############################### Peak picking ########################### | 154 ############################### Peak picking ########################### |
| 142 | 155 |
| 143 #elif str( $method.methods_conditional.preprocessing_method) == 'Peak_picking': | 156 #elif str( $method.methods_conditional.preprocessing_method) == 'Peak_picking': |
| 144 print('Peak_picking') | 157 print('Peak_picking') |
| 168 minmz = round(min(mz(msidata)), digits=2) | 181 minmz = round(min(mz(msidata)), digits=2) |
| 169 maxmz = round(max(mz(msidata)), digits=2) | 182 maxmz = round(max(mz(msidata)), digits=2) |
| 170 picked = c(minmz, maxmz,maxfeatures, pixelcount) | 183 picked = c(minmz, maxmz,maxfeatures, pixelcount) |
| 171 QC_numbers= cbind(QC_numbers, picked) | 184 QC_numbers= cbind(QC_numbers, picked) |
| 172 vectorofactions = append(vectorofactions, "picked") | 185 vectorofactions = append(vectorofactions, "picked") |
| 173 plot(msidata, pixel = 1:pixelcount, main="Average spectrum after peak picking") | 186 for (random_sample in 1:length(random_spectra)){ |
| 187 plot(msidata, pixel=random_spectra[random_sample], main=paste0("spectrum ", names(random_spectra)[random_sample]))} | |
| 188 title("Spectra after peak picking", outer=TRUE, line=0) | |
| 174 | 189 |
| 175 ############################### Peak alignment ########################### | 190 ############################### Peak alignment ########################### |
| 176 | 191 |
| 177 #elif str( $method.methods_conditional.preprocessing_method ) == 'Peak_alignment': | 192 #elif str( $method.methods_conditional.preprocessing_method ) == 'Peak_alignment': |
| 178 print('Peak_alignment') | 193 print('Peak_alignment') |
| 182 | 197 |
| 183 align_peak_reference = msidata | 198 align_peak_reference = msidata |
| 184 | 199 |
| 185 #elif str( $method.methods_conditional.align_ref_type.align_reference_datatype) == 'align_table': | 200 #elif str( $method.methods_conditional.align_ref_type.align_reference_datatype) == 'align_table': |
| 186 | 201 |
| 187 align_reference_table = read.delim("$method.methods_conditional.align_ref_type.mz_tabular", header = $method.methods_conditional.align_ref_type.align_mass_header, stringsAsFactors = FALSE) | 202 align_reference_table = read.delim("$method.methods_conditional.align_ref_type.mz_tabular", header = $method.methods_conditional.align_ref_type.feature_header, stringsAsFactors = FALSE) |
| 188 align_reference_column = align_reference_table[,$method.methods_conditional.align_ref_type.align_mass_column] | 203 align_reference_column = align_reference_table[,$method.methods_conditional.align_ref_type.feature_column] |
| 189 align_peak_reference = align_reference_column[align_reference_column>=min(mz(msidata)) & align_reference_column<=max(mz(msidata))] | 204 align_peak_reference = align_reference_column[align_reference_column>=min(mz(msidata)) & align_reference_column<=max(mz(msidata))] |
| 190 if (length(align_peak_reference) == 0) | 205 if (length(align_peak_reference) == 0) |
| 191 {align_peak_reference = 0} | 206 {align_peak_reference = 0} |
| 192 | 207 |
| 193 #elif str( $method.methods_conditional.align_ref_type.align_reference_datatype) == 'align_msidata_ref': | 208 #elif str( $method.methods_conditional.align_ref_type.align_reference_datatype) == 'align_msidata_ref': |
| 215 minmz = round(min(mz(msidata)), digits=2) | 230 minmz = round(min(mz(msidata)), digits=2) |
| 216 maxmz = round(max(mz(msidata)), digits=2) | 231 maxmz = round(max(mz(msidata)), digits=2) |
| 217 aligned = c(minmz, maxmz,maxfeatures, pixelcount) | 232 aligned = c(minmz, maxmz,maxfeatures, pixelcount) |
| 218 QC_numbers= cbind(QC_numbers, aligned) | 233 QC_numbers= cbind(QC_numbers, aligned) |
| 219 vectorofactions = append(vectorofactions, "aligned") | 234 vectorofactions = append(vectorofactions, "aligned") |
| 220 plot(msidata, pixel = 1:pixelcount, main="Average spectrum after alignment") | 235 for (random_sample in 1:length(random_spectra)){ |
| 236 plot(msidata, pixel=random_spectra[random_sample], main=paste0("spectrum ", names(random_spectra)[random_sample]))} | |
| 237 title("Spectra after alignment", outer=TRUE, line=0) | |
| 221 | 238 |
| 222 ############################### Peak filtering ########################### | 239 ############################### Peak filtering ########################### |
| 223 | 240 |
| 224 #elif str( $method.methods_conditional.preprocessing_method) == 'Peak_filtering': | 241 #elif str( $method.methods_conditional.preprocessing_method) == 'Peak_filtering': |
| 225 print('Peak_filtering') | 242 print('Peak_filtering') |
| 233 minmz = round(min(mz(msidata)), digits=2) | 250 minmz = round(min(mz(msidata)), digits=2) |
| 234 maxmz = round(max(mz(msidata)), digits=2) | 251 maxmz = round(max(mz(msidata)), digits=2) |
| 235 filtered = c(minmz, maxmz,maxfeatures, pixelcount) | 252 filtered = c(minmz, maxmz,maxfeatures, pixelcount) |
| 236 QC_numbers= cbind(QC_numbers, filtered) | 253 QC_numbers= cbind(QC_numbers, filtered) |
| 237 vectorofactions = append(vectorofactions, "filtered") | 254 vectorofactions = append(vectorofactions, "filtered") |
| 238 plot(msidata, pixel = 1:pixelcount, main="Average spectrum after filtering") | 255 for (random_sample in 1:length(random_spectra)){ |
| 256 plot(msidata, pixel=random_spectra[random_sample], main=paste0("spectrum ", names(random_spectra)[random_sample]))} | |
| 257 title("Spectra after filtering", outer=TRUE, line=0) | |
| 239 | 258 |
| 240 ############################### Data reduction ########################### | 259 ############################### Data reduction ########################### |
| 241 | 260 |
| 242 #elif str( $method.methods_conditional.preprocessing_method) == 'Data_reduction': | 261 #elif str( $method.methods_conditional.preprocessing_method) == 'Data_reduction': |
| 243 print('Data_reduction') | 262 print('Data_reduction') |
| 264 #elif str( $method.methods_conditional.methods_for_reduction.reduction_method) == 'peaks': | 283 #elif str( $method.methods_conditional.methods_for_reduction.reduction_method) == 'peaks': |
| 265 print('peaks reduction') | 284 print('peaks reduction') |
| 266 | 285 |
| 267 #if str( $method.methods_conditional.methods_for_reduction.ref_type.reference_datatype) == 'table': | 286 #if str( $method.methods_conditional.methods_for_reduction.ref_type.reference_datatype) == 'table': |
| 268 | 287 |
| 269 reference_table = read.delim("$method.methods_conditional.methods_for_reduction.ref_type.mz_tabular", header = $method.methods_conditional.methods_for_reduction.ref_type.mass_header, stringsAsFactors = FALSE) | 288 reference_table = read.delim("$method.methods_conditional.methods_for_reduction.ref_type.mz_tabular", header = $method.methods_conditional.methods_for_reduction.ref_type.feature_header, stringsAsFactors = FALSE) |
| 270 reference_column = reference_table[,$method.methods_conditional.methods_for_reduction.ref_type.mass_column] | 289 reference_column = reference_table[,$method.methods_conditional.methods_for_reduction.ref_type.feature_column] |
| 271 peak_reference = reference_column[reference_column>min(mz(msidata)) & reference_column<max(mz(msidata))] | 290 peak_reference = reference_column[reference_column>min(mz(msidata)) & reference_column<max(mz(msidata))] |
| 272 | 291 |
| 273 #elif str( $method.methods_conditional.methods_for_reduction.ref_type.reference_datatype) == 'msidata_ref': | 292 #elif str( $method.methods_conditional.methods_for_reduction.ref_type.reference_datatype) == 'msidata_ref': |
| 274 | 293 |
| 275 peak_reference = loadRData('$method.methods_conditional.methods_for_reduction.ref_type.peaks_msidata') | 294 peak_reference = loadRData('$method.methods_conditional.methods_for_reduction.ref_type.peaks_msidata') |
| 285 minmz = round(min(mz(msidata)), digits=2) | 304 minmz = round(min(mz(msidata)), digits=2) |
| 286 maxmz = round(max(mz(msidata)), digits=2) | 305 maxmz = round(max(mz(msidata)), digits=2) |
| 287 reduced = c(minmz, maxmz,maxfeatures, pixelcount) | 306 reduced = c(minmz, maxmz,maxfeatures, pixelcount) |
| 288 QC_numbers= cbind(QC_numbers, reduced) | 307 QC_numbers= cbind(QC_numbers, reduced) |
| 289 vectorofactions = append(vectorofactions, "reduced") | 308 vectorofactions = append(vectorofactions, "reduced") |
| 290 plot(msidata, pixel = 1:pixelcount, main="Average spectrum after data reduction") | 309 for (random_sample in 1:length(random_spectra)){ |
| 310 plot(msidata, pixel=random_spectra[random_sample], main=paste0("spectrum ", names(random_spectra)[random_sample]))} | |
| 311 title("Spectra after data reduction", outer=TRUE, line=0) | |
| 291 | 312 |
| 292 ############################### Transformation ########################### | 313 ############################### Transformation ########################### |
| 293 | 314 |
| 294 #elif str( $method.methods_conditional.preprocessing_method) == 'Transformation': | 315 #elif str( $method.methods_conditional.preprocessing_method) == 'Transformation': |
| 295 print('Transformation') | 316 print('Transformation') |
| 326 minmz = round(min(mz(msidata)), digits=2) | 347 minmz = round(min(mz(msidata)), digits=2) |
| 327 maxmz = round(max(mz(msidata)), digits=2) | 348 maxmz = round(max(mz(msidata)), digits=2) |
| 328 transformed = c(minmz, maxmz,maxfeatures, pixelcount) | 349 transformed = c(minmz, maxmz,maxfeatures, pixelcount) |
| 329 QC_numbers= cbind(QC_numbers, transformed) | 350 QC_numbers= cbind(QC_numbers, transformed) |
| 330 vectorofactions = append(vectorofactions, "transformed") | 351 vectorofactions = append(vectorofactions, "transformed") |
| 331 plot(msidata, pixel = 1:pixelcount, main="Average spectrum after transformation") | 352 for (random_sample in 1:length(random_spectra)){ |
| 353 plot(msidata, pixel=random_spectra[random_sample], main=paste0("spectrum ", names(random_spectra)[random_sample]))} | |
| 354 title("Spectra after transformation", outer=TRUE, line=0) | |
| 332 | 355 |
| 333 #end if | 356 #end if |
| 334 #end for | 357 #end for |
| 335 | 358 |
| 336 ############# Outputs: RData, imzml and QC report ############# | 359 ############# Outputs: RData, imzml and QC report ############# |
| 338 | 361 |
| 339 ## save msidata as imzML file, will only work if there is at least 1 m/z left | 362 ## save msidata as imzML file, will only work if there is at least 1 m/z left |
| 340 | 363 |
| 341 #if str($imzml_output) == "imzml_format": | 364 #if str($imzml_output) == "imzml_format": |
| 342 if (nrow(msidata) > 0){ | 365 if (nrow(msidata) > 0){ |
| 366 ## make sure that coordinates are integers | |
| 367 coord(msidata)\$y = as.integer(coord(msidata)\$y) | |
| 368 coord(msidata)\$x = as.integer(coord(msidata)\$x) | |
| 343 writeImzML(msidata, "out")} | 369 writeImzML(msidata, "out")} |
| 344 #elif str($imzml_output) == "rdata_format": | 370 #elif str($imzml_output) == "rdata_format": |
| 345 ## save as (.RData) | 371 ## save as (.RData) |
| 346 iData(msidata) = iData(msidata)[] | 372 iData(msidata) = iData(msidata)[] |
| 347 save(msidata, file="$outfile_rdata") | 373 save(msidata, file="$outfile_rdata") |
| 441 <when value="diff"> | 467 <when value="diff"> |
| 442 <param name="value_diffalignment" type="float" value="200" | 468 <param name="value_diffalignment" type="float" value="200" |
| 443 label="diff.max" help="Peaks that differ less than this value will be aligned together"/> | 469 label="diff.max" help="Peaks that differ less than this value will be aligned together"/> |
| 444 <param name="units_diffalignment" type="select" display="radio" optional="False" label="units"> | 470 <param name="units_diffalignment" type="select" display="radio" optional="False" label="units"> |
| 445 <option value="ppm" selected="True">ppm</option> | 471 <option value="ppm" selected="True">ppm</option> |
| 446 <option value="Da">m/z</option> | 472 <option value="mz">m/z</option> |
| 447 </param> | 473 </param> |
| 448 </when> | 474 </when> |
| 449 <when value="DP"> | 475 <when value="DP"> |
| 450 <param name="gap_DPalignment" type="float" value="0" | 476 <param name="gap_DPalignment" type="float" value="0" |
| 451 label="Gap" help="The gap penalty for the dynamic programming sequence alignment"/> | 477 label="Gap" help="The gap penalty for the dynamic programming sequence alignment"/> |
