Mercurial > repos > eschen42 > w4mclassfilter
comparison w4mclassfilter_wrapper.R @ 15:08d4ca8bc6dd draft
"planemo upload for repository https://github.com/HegemanLab/w4mclassfilter_galaxy_wrapper/tree/master commit 9639dde5737c9aa2330bb603c2299345939407cf"
author | eschen42 |
---|---|
date | Thu, 11 Mar 2021 20:46:26 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
14:1d36ecf93e67 | 15:08d4ca8bc6dd |
---|---|
1 #!/usr/bin/env Rscript | |
2 | |
3 library(batch) ## parseCommandArgs | |
4 | |
5 ######## | |
6 # MAIN # | |
7 ######## | |
8 | |
9 argVc <- unlist(parseCommandArgs(evaluate=FALSE)) | |
10 | |
11 ##------------------------------ | |
12 ## Initializing | |
13 ##------------------------------ | |
14 | |
15 ## options | |
16 ##-------- | |
17 | |
18 strAsFacL <- options()$stringsAsFactors | |
19 options(stringsAsFactors = FALSE) | |
20 | |
21 ## libraries | |
22 ##---------- | |
23 | |
24 suppressMessages(library(w4mclassfilter)) | |
25 | |
26 expected_version <- "0.98.18" | |
27 actual_version <- packageVersion("w4mclassfilter") | |
28 if(packageVersion("w4mclassfilter") < expected_version) { | |
29 stop( | |
30 sprintf( | |
31 "Unrecoverable error: Version %s of the 'w4mclassfilter' R package was loaded instead of expected version %s", | |
32 actual_version, expected_version | |
33 ) | |
34 ) | |
35 } | |
36 | |
37 ## constants | |
38 ##---------- | |
39 | |
40 modNamC <- "w4mclassfilter" ## module name | |
41 | |
42 topEnvC <- environment() | |
43 flgC <- "\n" | |
44 | |
45 ## functions | |
46 ##---------- | |
47 | |
48 flgF <- function(tesC, | |
49 envC = topEnvC, | |
50 txtC = NA) { ## management of warning and error messages | |
51 | |
52 tesL <- eval(parse(text = tesC), envir = envC) | |
53 | |
54 if(!tesL) { | |
55 | |
56 #sink(NULL) | |
57 stpTxtC <- ifelse(is.na(txtC), | |
58 paste0(tesC, " is FALSE"), | |
59 txtC) | |
60 | |
61 stop(stpTxtC, | |
62 call. = FALSE) | |
63 | |
64 } | |
65 | |
66 } ## flgF | |
67 | |
68 | |
69 ## log file | |
70 ##--------- | |
71 | |
72 my_print <- function(x, ...) { cat(c(x, ...))} | |
73 | |
74 my_print("\nStart of the '", modNamC, "' Galaxy module call: ", | |
75 format(Sys.time(), "%a %d %b %Y %X"), "\n", sep="") | |
76 | |
77 ## arguments | |
78 ##---------- | |
79 | |
80 # files | |
81 | |
82 dataMatrix_in <- as.character(argVc["dataMatrix_in"]) | |
83 dataMatrix_out <- as.character(argVc["dataMatrix_out"]) | |
84 | |
85 sampleMetadata_in <- as.character(argVc["sampleMetadata_in"]) | |
86 sampleMetadata_out <- as.character(argVc["sampleMetadata_out"]) | |
87 | |
88 variableMetadata_in <- as.character(argVc["variableMetadata_in"]) | |
89 variableMetadata_out <- as.character(argVc["variableMetadata_out"]) | |
90 | |
91 # other parameters | |
92 | |
93 transformation <- as.character(argVc["transformation"]) | |
94 my_imputation_label <- as.character(argVc["imputation"]) | |
95 my_imputation_function <- if (my_imputation_label == "zero") { | |
96 w4m_filter_zero_imputation | |
97 } else if (my_imputation_label == "center") { | |
98 w4m_filter_median_imputation | |
99 } else if (my_imputation_label == "none") { | |
100 w4m_filter_no_imputation | |
101 } else { | |
102 stop(sprintf("Unknown value %s supplied for 'imputation' parameter. Expected one of {zero,center,none}.")) | |
103 } | |
104 wildcards <- as.logical(argVc["wildcards"]) | |
105 sampleclassNames <- as.character(argVc["sampleclassNames"]) | |
106 sampleclassNames <- strsplit(x = sampleclassNames, split = ",", fixed = TRUE)[[1]] | |
107 if (wildcards) { | |
108 sampleclassNames <- gsub("[.]", "[.]", sampleclassNames) | |
109 sampleclassNames <- utils::glob2rx(sampleclassNames, trim.tail = FALSE) | |
110 } | |
111 inclusive <- as.logical(argVc["inclusive"]) | |
112 classnameColumn <- as.character(argVc["classnameColumn"]) | |
113 samplenameColumn <- as.character(argVc["samplenameColumn"]) | |
114 | |
115 order_vrbl <- as.character(argVc["order_vrbl"]) | |
116 centering <- as.character(argVc["centering"]) | |
117 order_smpl <- | |
118 if (centering == 'centroid' || centering == 'median') { | |
119 "sampleMetadata" | |
120 } else { | |
121 as.character(argVc["order_smpl"]) | |
122 } | |
123 | |
124 variable_range_filter <- as.character(argVc["variable_range_filter"]) | |
125 variable_range_filter <- strsplit(x = variable_range_filter, split = ",", fixed = TRUE)[[1]] | |
126 | |
127 ## ----------------------------- | |
128 ## Transformation and imputation | |
129 ## ----------------------------- | |
130 my_transformation_and_imputation <- if (transformation == "log10") { | |
131 function(m) { | |
132 # convert negative intensities to missing values | |
133 m[m < 0] <- NA | |
134 if (!is.matrix(m)) | |
135 stop("Cannot transform and impute data - the supplied data is not in matrix form") | |
136 if (nrow(m) == 0) | |
137 stop("Cannot transform and impute data - data matrix has no rows") | |
138 if (ncol(m) == 0) | |
139 stop("Cannot transform and impute data - data matrix has no columns") | |
140 suppressWarnings({ | |
141 # suppress warnings here since non-positive values will produce NaN's that will be fixed in the next step | |
142 m <- log10(m) | |
143 m[is.na(m)] <- NA | |
144 }) | |
145 return ( my_imputation_function(m) ) | |
146 } | |
147 } else if (transformation == "log2") { | |
148 function(m) { | |
149 # convert negative intensities to missing values | |
150 m[m < 0] <- NA | |
151 if (!is.matrix(m)) | |
152 stop("Cannot transform and impute data - the supplied data is not in matrix form") | |
153 if (nrow(m) == 0) | |
154 stop("Cannot transform and impute data - data matrix has no rows") | |
155 if (ncol(m) == 0) | |
156 stop("Cannot transform and impute data - data matrix has no columns") | |
157 suppressWarnings({ | |
158 # suppress warnings here since non-positive values will produce NaN's that will be fixed in the next step | |
159 m <- log2(m) | |
160 m[is.na(m)] <- NA | |
161 }) | |
162 return ( my_imputation_function(m) ) | |
163 } | |
164 } else { | |
165 function(m) { | |
166 # convert negative intensities to missing values | |
167 m[m < 0] <- NA | |
168 if (!is.matrix(m)) | |
169 stop("Cannot transform and impute data - the supplied data is not in matrix form") | |
170 if (nrow(m) == 0) | |
171 stop("Cannot transform and impute data - data matrix has no rows") | |
172 if (ncol(m) == 0) | |
173 stop("Cannot transform and impute data - data matrix has no columns") | |
174 suppressWarnings({ | |
175 # suppress warnings here since non-positive values will produce NaN's that will be fixed in the next step | |
176 m[is.na(m)] <- NA | |
177 }) | |
178 return ( my_imputation_function(m) ) | |
179 } | |
180 } | |
181 | |
182 ##------------------------------ | |
183 ## Computation | |
184 ##------------------------------ | |
185 | |
186 result <- w4m_filter_by_sample_class( | |
187 dataMatrix_in = dataMatrix_in | |
188 , sampleMetadata_in = sampleMetadata_in | |
189 , variableMetadata_in = variableMetadata_in | |
190 , dataMatrix_out = dataMatrix_out | |
191 , sampleMetadata_out = sampleMetadata_out | |
192 , variableMetadata_out = variableMetadata_out | |
193 , classes = sampleclassNames | |
194 , include = inclusive | |
195 , class_column = classnameColumn | |
196 , samplename_column = samplenameColumn | |
197 , order_vrbl = order_vrbl | |
198 , order_smpl = order_smpl | |
199 , centering = centering | |
200 , variable_range_filter = variable_range_filter | |
201 , failure_action = my_print | |
202 , data_imputation = my_transformation_and_imputation | |
203 ) | |
204 | |
205 my_print("\nResult of '", modNamC, "' Galaxy module call to 'w4mclassfilter::w4m_filter_by_sample_class' R function: ", | |
206 as.character(result), "\n", sep = "") | |
207 | |
208 ##-------- | |
209 ## Closing | |
210 ##-------- | |
211 | |
212 my_print("\nEnd of '", modNamC, "' Galaxy module call: ", | |
213 as.character(Sys.time()), "\n", sep = "") | |
214 | |
215 #sink() | |
216 | |
217 if (!file.exists(dataMatrix_out)) { | |
218 print(sprintf("ERROR %s::w4m_filter_by_sample_class - file '%s' was not created", modNamC, dataMatrix_out)) | |
219 }# else { print(sprintf("INFO %s::w4m_filter_by_sample_class - file '%s' was exists", modNamC, dataMatrix_out)) } | |
220 | |
221 if (!file.exists(variableMetadata_out)) { | |
222 print(sprintf("ERROR %s::w4m_filter_by_sample_class - file '%s' was not created", modNamC, variableMetadata_out)) | |
223 } # else { print(sprintf("INFO %s::w4m_filter_by_sample_class - file '%s' was exists", modNamC, variableMetadata_out)) } | |
224 | |
225 if (!file.exists(sampleMetadata_out)) { | |
226 print(sprintf("ERROR %s::w4m_filter_by_sample_class - file '%s' was not created", modNamC, sampleMetadata_out)) | |
227 } # else { print(sprintf("INFO %s::w4m_filter_by_sample_class - file '%s' was exists", modNamC, sampleMetadata_out)) } | |
228 | |
229 if( !result ) { | |
230 stop(sprintf("ERROR %s::w4m_filter_by_sample_class - method failed", modNamC)) | |
231 } | |
232 | |
233 rm(list = ls()) |