26
|
1 #Author : keime / lornage
|
|
2 #Date : 2014/11
|
|
3
|
|
4
|
|
5 ########################################################################################################
|
|
6 #This function concatenates htseq-count result files, normalizes data and annotates data using Ensembl annotations
|
|
7
|
|
8 #arguments
|
|
9 #Species : Name of the species
|
|
10 #ensversion : version of Ensembl to use
|
|
11 #fileout : tab-delimited file containing for each library ; gene id, raw read counts, normalized data as well as normalized data/gene length
|
|
12 #corresp : data.frame linking the file loaded into galaxy to the corresponding condition
|
|
13 #nfiles : number of files(conditions)
|
|
14
|
|
15 #output : a data.frame with the following columns :
|
|
16 #ensembl gene id
|
|
17 #raw read counts for each library (one column per library)
|
|
18 #normalized data for each library (one column per library)
|
|
19 #normalized data divided by gene length for each library (one column per library)
|
|
20 #Gene name
|
|
21 #Description
|
|
22
|
|
23 #require : biomaRt and DESeq2 Bioconductor packages / package plyr1.8.1
|
|
24
|
|
25 #Methods :
|
|
26 #Normalization is performed using the method described in Genome Biology 2010;11(10):R106
|
|
27 #and implemented in the DESeq2 Bioconductor package
|
|
28 #Gene length correspond to the median of the size of all transcripts corresponding to this gene
|
|
29 #########################################################################################################
|
|
30
|
|
31
|
|
32
|
|
33 RNAseqDataAnnotation = function(Species, ensversion, fileout, corresp ,nfiles){
|
|
34
|
|
35 #Create a string vector called libnames that contains the name of the samples
|
|
36 libnames=rep("",nfiles)
|
|
37 for (i in 1:nfiles){
|
|
38 libnames[i]=toString(corresp$Sample_name[i])
|
|
39 }
|
|
40
|
|
41 #For all files in corresp read the corresponding file into R
|
|
42 suppressPackageStartupMessages(library(plyr, lib.loc = NULL, character.only = FALSE, logical.return = FALSE, warn.conflicts = FALSE, verbose=FALSE, quietly = TRUE))
|
|
43 datalist = list()
|
|
44 for(i in 1:nfiles){
|
|
45 rawdata=read.table(toString(corresp$Files[i]), header =T, sep ="\t")
|
|
46 #noSpikes_htseq.
|
|
47 nbrrows=nrow(rawdata)
|
|
48 datalist[[i]]=rawdata[1:(nbrrows-5), ] # skip the last 5 lines of HTSeq-count files
|
|
49 colnames(datalist[[i]]) = c("ID",libnames[i])
|
|
50 }
|
|
51
|
|
52 #Join all the files in a data.frame called datafile with rownames = gene id
|
|
53 datafile = join_all(datalist, by = "ID", type = "left", match = "all")
|
|
54
|
|
55 #Calculate the number of geneID pro file
|
|
56 nbID=data.frame(rep("",nfiles))
|
|
57 for(i in 1:nfiles){
|
|
58 nbID[,i]=nrow(datalist[[i]])
|
|
59 }
|
|
60 totalnbID=apply((nbID[,1:nfiles]),1,sum)
|
|
61
|
|
62 #Verify that all the files contain the same gene ID
|
|
63 if (nrow(datafile)*nfiles==totalnbID[1]){
|
|
64
|
|
65 #Suppress genes not expressed in all samples
|
|
66 datafile = datafile[apply(datafile[,2:(nfiles+1)],1,sum)!=0,]
|
|
67 row.names(datafile)=datafile[,1]
|
|
68 data=datafile[,-1]
|
|
69
|
|
70 #Number of libraries
|
|
71 nblib= dim(data)[2]
|
|
72 #Determine Data + normalization if the specie is not known
|
|
73 if (Species=="None"){
|
|
74 #Normalized data calculation
|
|
75 nbcol = dim(data)[2] #nb of column in the data.frame
|
|
76 suppressPackageStartupMessages(library(DESeq2, lib.loc = NULL, character.only = FALSE, logical.return = FALSE, warn.conflicts = FALSE, verbose=FALSE, quietly = TRUE))
|
|
77 conds = factor(1:nblib)
|
|
78 design = data.frame(Condition=conds)
|
|
79 dds = DESeqDataSetFromMatrix(countData=data, colData=design, design=~Condition)
|
|
80 dds = estimateSizeFactors(dds)
|
|
81 datanorm = t(t(data)/sizeFactors(dds))
|
|
82
|
|
83 #Data + normalization
|
|
84 dataall = data.frame(row.names(datafile), data, datanorm )
|
|
85
|
|
86 #Renames columns
|
|
87 colnames(dataall) = c("Ensembl gene id", paste(libnames,"(raw read counts)"), paste(libnames,"(normalized)"))
|
|
88 write.table(dataall, file=fileout, sep="\t", quote=F, row.names=F)
|
|
89 }
|
|
90
|
|
91 #Determine Data + normalization + annotation if the specie is known
|
|
92 else{
|
|
93 #Add annotations and calculate gene length
|
|
94 suppressPackageStartupMessages(library(biomaRt, lib.loc = NULL, character.only = FALSE, logical.return = FALSE, warn.conflicts = FALSE,verbose=FALSE, quietly = TRUE))
|
|
95
|
|
96 #Convert Ensembl version to host
|
|
97 correspondingdate = toString(ensversion)
|
|
98 host = paste(correspondingdate, ".archive.ensembl.org/biomart/martservice/", sep="")
|
|
99
|
|
100 #Load the correct bmdataset
|
|
101 bmdataset = toString(Species)
|
|
102 ensembl=useMart("ENSEMBL_MART_ENSEMBL", host=host, dataset=bmdataset)
|
|
103 if (toString(ensversion)=="oct2014" | toString(ensversion)=="aug2014" ) {
|
|
104 annotation1 = getBM(attributes=c("ensembl_gene_id","external_gene_name","description", "ensembl_transcript_id","exon_chrom_start","exon_chrom_end"),filters="ensembl_gene_id", values=rownames(data), mart=ensembl)
|
|
105 }
|
|
106 else{
|
|
107 annotation1 = getBM(attributes=c("ensembl_gene_id","external_gene_id","description", "ensembl_transcript_id","exon_chrom_start","exon_chrom_end"),filters="ensembl_gene_id", values=rownames(data), mart=ensembl)
|
|
108 }
|
|
109
|
|
110 #because all the annotations are not always found in a first step
|
|
111 not = rownames(data)[!rownames(data) %in% unique(annotation1$ensembl_gene_id)]
|
|
112 if (length(not) !=0){
|
|
113 if (toString(ensversion)=="oct2014" | toString(ensversion)=="aug2014" ) {
|
|
114 annotationnot = getBM(attributes=c("ensembl_gene_id","external_gene_name","description", "ensembl_transcript_id","exon_chrom_start","exon_chrom_end"),filters="ensembl_gene_id", values=not, mart=ensembl)
|
|
115 annotation2 = rbind(annotation1, annotationnot)
|
|
116 }
|
|
117 else {
|
|
118 annotationnot = getBM(attributes=c("ensembl_gene_id","external_gene_id","description", "ensembl_transcript_id","exon_chrom_start","exon_chrom_end"), filters="ensembl_gene_id", values=not, mart=ensembl)
|
|
119 annotation2 = rbind(annotation1, annotationnot)
|
|
120 }
|
|
121 }
|
|
122 else{
|
|
123 annotation2 = annotation1
|
|
124 }
|
|
125
|
|
126
|
|
127 #because all the annotations are not always found in a first or second step
|
|
128 not = rownames(data)[!rownames(data) %in% unique(annotation2$ensembl_gene_id)]
|
|
129 if (length(not) !=0){
|
|
130 if (toString(ensversion)=="oct2014" | toString(ensversion)=="aug2014" ) {
|
|
131 annotationnot = getBM(attributes=c("ensembl_gene_id","external_gene_name","description", "ensembl_transcript_id","exon_chrom_start","exon_chrom_end"),filters="ensembl_gene_id", values=not, mart=ensembl)
|
|
132 annotation = rbind(annotation2, annotationnot)
|
|
133 }
|
|
134 else {
|
|
135 annotationnot = getBM(attributes=c("ensembl_gene_id","external_gene_id","description", "ensembl_transcript_id","exon_chrom_start","exon_chrom_end"), filters="ensembl_gene_id", values=not, mart=ensembl)
|
|
136 annotation = rbind(annotation2, annotationnot)
|
|
137 }
|
|
138 }
|
|
139 else{
|
|
140 annotation = annotation2
|
|
141 }
|
|
142
|
|
143 #Exon length
|
|
144 ensinfos.exlen = data.frame(annotation$ensembl_gene_id, annotation$ensembl_transcript_id, abs(annotation$exon_chrom_start - annotation$exon_chrom_end)+1)
|
|
145 colnames(ensinfos.exlen) = c("ensembl_gene_id", "ensembl_transcript_id", "exon_length")
|
|
146
|
|
147 #Transcript length
|
|
148 tlen = tapply(ensinfos.exlen$exon_length, ensinfos.exlen$ensembl_transcript_id, sum)
|
|
149 tlen.gene = merge(tlen, unique(ensinfos.exlen[,1:2]), by.x="row.names", by.y="ensembl_transcript_id")
|
|
150 colnames(tlen.gene) = c("ensembl_transcript_id", "transcript_length","ensembl_gene_id")
|
|
151
|
|
152 #Gene length = median of the size of all transcripts corresponding to this gene
|
|
153 glen = tapply(tlen.gene$transcript_length, tlen.gene$ensembl_gene_id, median)
|
|
154
|
|
155 #Data with gene length
|
|
156 datalen = merge(data, glen, by="row.names")
|
|
157 colnames(datalen) = c("Ensembl_gene_id",colnames(data), "Gene_length")
|
|
158
|
|
159 #Data with annotations and gene length
|
|
160 annotationgene = unique(annotation[,1:3])
|
|
161 dataannot = merge(datalen, annotationgene, by.x="Ensembl_gene_id", by.y="ensembl_gene_id")
|
|
162
|
|
163 #To keep only the first part of the gene description (before [)
|
|
164 tmpdesc = strsplit(as.character(dataannot$description),"[", fixed=T)
|
|
165 f = function(l){
|
|
166 if (length(l)>=1){
|
|
167 return(l[[1]])
|
|
168 }
|
|
169 else{
|
|
170 return("")
|
|
171 }
|
|
172 }
|
|
173 tmpdescok = unlist(lapply(tmpdesc, f))
|
|
174 dataannot$description = tmpdescok
|
|
175
|
|
176 #Normalized data calculation
|
|
177 nbcol = dim(dataannot)[2] #nb of column in the data.frame
|
|
178 suppressPackageStartupMessages(library(DESeq2, lib.loc = NULL, character.only = FALSE, logical.return = FALSE, warn.conflicts = FALSE,verbose=FALSE, quietly = TRUE))
|
|
179 conds = factor(1:nblib)
|
|
180 design = data.frame(Condition=conds)
|
|
181 dds = DESeqDataSetFromMatrix(countData=dataannot[,-c(1,nbcol,nbcol-1,nbcol-2)], colData=design, design=~Condition)
|
|
182 dds = estimateSizeFactors(dds)
|
|
183 datanorm = t(t(dataannot[,-c(1,nbcol,nbcol-1,nbcol-2)])/sizeFactors(dds))
|
|
184
|
|
185 #Normalized data adjusted for gene length (normalized data / gene length)
|
|
186 rpkn = datanorm / (as.vector(dataannot[,nbcol-2]/1000 ))
|
|
187
|
|
188 #Data + annotations + rpkn
|
|
189 dataall = data.frame(dataannot[,-c(nbcol,nbcol-1,nbcol-2)] , datanorm, rpkn, dataannot[,c(nbcol-1,nbcol)] )
|
|
190
|
|
191 #Renames columns
|
|
192 colnames(dataall) = c("Ensembl gene id", paste(libnames,"(raw read counts)"), paste(libnames,"(normalized)"), paste(libnames,"(normalized and divided by gene length in kb)"), "Gene name", "Description")
|
|
193 write.table(dataall, file=fileout, sep="\t", quote=F, row.names=F)
|
|
194
|
|
195 }
|
|
196 }
|
|
197 else{
|
|
198 print("The files are not the same length")
|
|
199 }
|
|
200 }
|
|
201
|
|
202 # Build a dataframe containing the files loaded into galaxy and their corresponding condition
|
|
203
|
|
204 args <- commandArgs(trailingOnly = TRUE)
|
|
205
|
|
206 Files=c()
|
|
207 Sample_name =c()
|
|
208 nbcells = (length(args)-3)
|
|
209 for (i in seq(1,nbcells,2)){
|
|
210 Files = c(Files, args[3+i])
|
|
211 Sample_name = c(Sample_name, args[4+i])
|
|
212 }
|
|
213 nfiles=nbcells/2
|
|
214 corresp = data.frame(Files=Files, Sample_name=Sample_name)
|
|
215
|
|
216 # Take the informations given by the galaxy user to run the script
|
|
217 RNAseqDataAnnotation(args[1], args[2],args[3],corresp,nfiles)
|
|
218
|
|
219
|
|
220
|
|
221
|
|
222
|
|
223
|