diff wormsmeasurements.R @ 0:4da00cf02719 draft default tip

planemo upload for repository https://github.com/jeanlecras/tools-ecology/tree/master/tools/WormsMeasurements commit ced658540f05bb07e1e687af30a3fa4ea8e4803c
author ecology
date Wed, 28 May 2025 10:12:16 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/wormsmeasurements.R	Wed May 28 10:12:16 2025 +0000
@@ -0,0 +1,131 @@
+##05/05/2025
+##Jean Le Cras
+### Enrich dataset with data from WoRMS
+
+#load libraries
+library(tidyverse)
+library(worrms)
+library(fastDummies)
+
+### parameters
+args <- commandArgs(trailingOnly = TRUE)
+if (length(args) == 0) {
+    stop("This tool needs at least one argument")
+}
+
+scientificName_name <- args[3]
+occurrence <- read.csv(args[1], header=T, sep="\t") %>% 
+  arrange(.[[scientificName_name]])
+measurement_types <- unlist(str_split(args[2], ","))
+include_inherited <- ifelse(args[4]=="true", T, F)
+pivot_wider <- ifelse(args[5]=="true", T, F)
+exclude_NA <- ifelse(args[6]=="true", T, F)
+
+# regex to only keep genus and specific epithet from scientific names
+regex_find <- "^([A-Z][^A-Z(]+)(.*)$"
+regex_replace <- "\\1"
+
+
+# function to extract the measurement values from the attributes data tibble
+extract_traits_values <- function(traits_data) {
+  result <- setNames(rep(NA, length(measurement_types)), measurement_types)
+  
+  if (is.null(traits_data) || nrow(traits_data) == 0) {
+    return(result)
+  }
+  
+  traits_filtered <- traits_data %>%
+    filter(measurementType %in% measurement_types) %>%
+    filter(!is.na(measurementValue))
+  
+  if (nrow(traits_filtered) == 0) {
+    return(result)
+  }
+  
+  for (i in 1:nrow(traits_filtered)) {
+    result[traits_filtered$measurementType[i]] <- traits_filtered$measurementValue[i]
+  }
+  return(result)
+}
+
+# function to call the call the WoRMS API and get the measurement values
+get_life_history_traits <- function(scientific_name) {
+  clean_scientific_name <- trimws(gsub(regex_find, regex_replace, scientific_name))
+
+  if (clean_scientific_name %in% names(cache)) { 
+    return(cache[[clean_scientific_name]])  
+  }
+  
+  worms_id <- tryCatch(
+    wm_name2id(name = clean_scientific_name),
+    error = function(e) NA
+  )
+  
+  if (is.na(worms_id) || length(worms_id) == 0) {
+    cache[[clean_scientific_name]] <<- NULL
+    return(NULL)
+  }
+  
+  data_attr <- tryCatch(
+    wm_attr_data(worms_id, include_inherited=include_inherited),
+    error = function(e) NULL
+  )
+  
+  if (is.null(data_attr)) {
+    cache[[clean_scientific_name]] <<- NULL
+    return(NULL)
+  }
+  
+  traits <- extract_traits_values(data_attr)
+  cache[[clean_scientific_name]] <<- traits
+  return(traits)
+}
+
+# a cache to limit API calls
+cache <- list()
+
+# add a columns conataining the lists of values of the measurments requested
+trait_data <- occurrence %>%
+  mutate(life_history_traits = map(.data[[scientificName_name]], ~ get_life_history_traits(.x)))
+
+# convert the column of lists to multiple columns of unique values
+trait_data <- trait_data %>%
+  unnest_wider(life_history_traits)
+
+# make sur each measurement type has a column
+for (col in measurement_types) {
+  if (!(col %in% names(trait_data))) {
+    trait_data[[col]] <- NA
+  }
+}
+
+# list of quantitativ measurements
+numeric_cols <- c()
+
+# try to convert columns to numeric and remember them
+trait_data <- trait_data %>%
+  mutate(across(all_of(measurement_types), ~ {
+    numeric_col <- suppressWarnings(as.numeric(.))
+    if (all(is.na(.) == is.na(numeric_col))) {
+      numeric_cols <<- c(numeric_cols, cur_column())
+      numeric_col
+    } else {
+      .
+    }
+  }))
+
+# filter NA but only in the added columns
+if (exclude_NA) {
+  trait_data <- trait_data[complete.cases(trait_data[, measurement_types]),]
+}
+
+# determine what are the qualitativ columns to be one hot encoded
+factor_cols <- setdiff(measurement_types, numeric_cols)
+
+# one hot encode quantitativ columns
+if (pivot_wider & length(factor_cols) > 0) {
+  trait_data <- dummy_cols(trait_data, select_columns = factor_cols, remove_selected_columns=T, ignore_na=T)
+}
+
+# write the enriched dataset as tabular
+write.table(trait_data, "enriched_data.tabular", sep="\t", row.names = FALSE)
\ No newline at end of file