Mercurial > repos > ecology > tool_anonymization
comparison graph_stat_presence_abs.r @ 0:c586703ea141 draft default tip
"planemo upload for repository https://github.com/Marie59/Data_explo_tools commit 60627aba07951226c8fd6bb3115be4bd118edd4e"
| author | ecology |
|---|---|
| date | Fri, 13 Aug 2021 18:13:54 +0000 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:c586703ea141 |
|---|---|
| 1 #Rscript | |
| 2 | |
| 3 ################################ | |
| 4 ## Median and dispersion ## | |
| 5 ################################ | |
| 6 | |
| 7 #####Packages : Cowplot | |
| 8 # ggplot2 | |
| 9 | |
| 10 #####Load arguments | |
| 11 | |
| 12 args <- commandArgs(trailingOnly = TRUE) | |
| 13 | |
| 14 if (length(args) == 0) { | |
| 15 stop("This tool needs at least one argument") | |
| 16 }else{ | |
| 17 table <- args[1] | |
| 18 hr <- args[2] | |
| 19 var <- as.numeric(args[3]) | |
| 20 spe <- as.numeric(args[4]) | |
| 21 loc <- as.numeric(args[5]) | |
| 22 time <- as.numeric(args[6]) | |
| 23 source(args[7]) | |
| 24 } | |
| 25 | |
| 26 if (hr == "false") { | |
| 27 hr <- FALSE | |
| 28 }else{ | |
| 29 hr <- TRUE | |
| 30 } | |
| 31 | |
| 32 #####Import data | |
| 33 data <- read.table(table, sep = "\t", dec = ".", header = hr, fill = TRUE, encoding = "UTF-8") | |
| 34 data <- na.omit(data) | |
| 35 colvar <- colnames(data)[var] | |
| 36 colspe <- colnames(data)[spe] | |
| 37 colloc <- colnames(data)[loc] | |
| 38 coltime <- colnames(data)[time] | |
| 39 | |
| 40 data <- data[grep("^$", data[, spe], invert = TRUE), ] | |
| 41 | |
| 42 #####Your analysis | |
| 43 | |
| 44 ####Median and data dispersion#### | |
| 45 | |
| 46 #Median | |
| 47 graph_median <- function(data, var) { | |
| 48 graph_median <- ggplot2::ggplot(data, ggplot2::aes_string(y = var)) + | |
| 49 ggplot2::geom_boxplot(color = "darkblue") + | |
| 50 ggplot2::theme(legend.position = "none") + ggplot2::ggtitle("Median") | |
| 51 | |
| 52 return(graph_median) | |
| 53 | |
| 54 } | |
| 55 | |
| 56 #Dispersion | |
| 57 dispersion <- function(data, var, var2) { | |
| 58 graph_dispersion <- ggplot2::ggplot(data) + | |
| 59 ggplot2::geom_point(ggplot2::aes_string(x = var2, y = var, color = var2)) + | |
| 60 ggplot2::scale_fill_brewer(palette = "Set3") + | |
| 61 ggplot2::theme(legend.position = "none", axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5, hjust = 1), plot.title = ggplot2::element_text(color = "black", size = 12, face = "bold")) + ggplot2::ggtitle("Dispersion") | |
| 62 | |
| 63 return(graph_dispersion) | |
| 64 | |
| 65 } | |
| 66 | |
| 67 #The 2 graph | |
| 68 med_disp <- function(med, disp) { | |
| 69 graph <- cowplot::plot_grid(med, disp, ncol = 1, nrow = 2, vjust = -5, scales = "free") | |
| 70 | |
| 71 ggplot2::ggsave("Med_Disp.png", graph, width = 12, height = 20, units = "cm") | |
| 72 } | |
| 73 | |
| 74 | |
| 75 #### Zero problem in data #### | |
| 76 | |
| 77 #Put data in form | |
| 78 | |
| 79 data_num <- make_table_analyse(data, colvar, colspe, colloc, coltime) | |
| 80 nb_spe <- length(unique(data[, spe])) | |
| 81 nb_col <- ncol(data_num) - nb_spe + 1 | |
| 82 data_num <- data_num[, nb_col:ncol(data_num)] | |
| 83 | |
| 84 #Presence of zeros in the data | |
| 85 mat_corr <- function(data) { | |
| 86 cor(data) | |
| 87 } | |
| 88 p_mat <- function(data) { | |
| 89 ggcorrplot::cor_pmat(data) | |
| 90 } # compute a matrix of correlation p-values | |
| 91 | |
| 92 graph_corr <- function(data_num) { | |
| 93 graph <- ggcorrplot::ggcorrplot(mat_corr(data_num), method = "circle", p.mat = p_mat(data_num), #barring the no significant coefficient | |
| 94 ggtheme = ggplot2::theme_gray, colors = c("#00AFBB", "#E7B800", "#FC4E07")) | |
| 95 | |
| 96 ggplot2::ggsave("0_pb.png", graph) | |
| 97 } | |
| 98 | |
| 99 ##Med and disp | |
| 100 med <- graph_median(data, var = colvar) | |
| 101 disp <- dispersion(data, var = colvar, var2 = colspe) | |
| 102 med_disp(med = med, disp = disp) | |
| 103 | |
| 104 ##O problem | |
| 105 graph_corr(data_num) |
