Mercurial > repos > ecology > ecoregion_brt_analysis
comparison brt.R @ 0:7d77be8fab92 draft
planemo upload for repository https://github.com/galaxyecology/tools-ecology/tree/master/tools/Ecoregionalization_workflow commit e03df85746a3b61a382a5ee7e3357a8bf42a5097
author | ecology |
---|---|
date | Wed, 11 Sep 2024 09:18:37 +0000 |
parents | |
children | d63d74194100 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:7d77be8fab92 |
---|---|
1 #16/02/2023 | |
2 ## Analyse BRT data | |
3 | |
4 ### Clean environment | |
5 rm(list = ls(all.names = TRUE)) | |
6 options(warn=1) | |
7 | |
8 ### load packages | |
9 | |
10 library(dismo, warn.conflicts = FALSE) | |
11 library(gbm, warn.conflicts = FALSE) | |
12 library(ggplot2, warn.conflicts = FALSE) | |
13 | |
14 | |
15 #load arguments | |
16 args = commandArgs(trailingOnly=TRUE) | |
17 if (length(args)==0) | |
18 { | |
19 stop("This tool needs at least one argument") | |
20 }else{ | |
21 enviro <- args[1] | |
22 species_files <- args[2] | |
23 abio_para <- args[3] | |
24 dec_env <- args[8] | |
25 dec_species <- args[9] | |
26 } | |
27 | |
28 ### load data | |
29 | |
30 env = read.table(enviro, dec = dec_env, header = TRUE, sep="\t", na.strings = "-9999") | |
31 pred_vars = strsplit(abio_para, ",")[[1]] | |
32 data_files = strsplit(species_files,",") | |
33 | |
34 pred.vars <- character(length(pred_vars)) | |
35 | |
36 for (i in seq_along(pred_vars)) { | |
37 pred_var_col <- as.numeric(pred_vars[i]) | |
38 pred.vars[i] <- names(env)[pred_var_col]} | |
39 | |
40 #environemental parameters | |
41 #Carbo,Grav,Maxbearing,Maxmagnit,Meancurmag,Meansal,Meantheta,Mud,Prof,Rugosity,Sand,Seaice_prod,Sili,Slope,Standcurmag,Standsal,Standtheta | |
42 | |
43 #Load functions | |
44 | |
45 make.brt <- function(spe,data,pred.vars,env,nb_file){ | |
46 cat(paste(" ", spe,":\n -> optimising BRT model ",sep="")) | |
47 lr <- 0.05 | |
48 no.trees <- 0 | |
49 while ( no.trees < 1000 & lr > 0.0005 ) { | |
50 cat(".") | |
51 try(brt_step <- gbm.step(data= data, gbm.x = pred.vars, gbm.y = spe, family = "bernoulli", tree.complexity = 2, learning.rate = lr,max.trees = 10000, plot.main = F)) | |
52 # if the gbm does not converge, the return object is null or of size 0 | |
53 if (!is.null(brt_step) ) { | |
54 if (object.size(brt_step) > 0 ) { | |
55 no.trees <- brt_step$gbm.call$best.trees | |
56 print(no.trees) | |
57 } | |
58 } else { | |
59 no.trees <- 0 | |
60 print(no.trees) | |
61 } | |
62 | |
63 # decrease the learning rate | |
64 lr <- lr / 2 | |
65 print(lr) | |
66 } | |
67 #plot | |
68 if (is.null(brt_step)==FALSE){ | |
69 pdf(file = paste("BRT-",spe,".pdf")) | |
70 gbm.plot(brt_step, write.title = T,show.contrib = T, y.label = "fitted function",plot.layout = c(3,3)) | |
71 dev.off() | |
72 #total deviance explained as (Leathwick et al., 2006) | |
73 total_deviance <- brt_step$self.statistics$mean.null | |
74 cross_validated_residual_deviance <- brt_step$cv.statistics$deviance.mean | |
75 total_deviance_explained <- (total_deviance - cross_validated_residual_deviance)/total_deviance | |
76 #Validation file | |
77 valid = cbind(spe,brt_step$cv.statistics$discrimination.mean,brt_step$gbm.call$tree.complexity,total_deviance_explained) | |
78 write.table(valid, paste(nb_file,"_brts_validation_ceamarc.tsv",sep=""), quote=FALSE, dec=".",sep="\t" ,row.names=F, col.names=F,append = T)} | |
79 | |
80 return(brt_step) | |
81 } | |
82 | |
83 make.prediction.brt <- function(brt_step){ | |
84 #predictions | |
85 preds <- predict.gbm(brt_step,env,n.trees=brt_step$gbm.call$best.trees, type="response") | |
86 preds <- as.data.frame(cbind(env$lat,env$long,preds)) | |
87 colnames(preds) <- c("lat","long","Prediction.index") | |
88 #carto | |
89 ggplot()+ | |
90 geom_raster(data = preds , aes(x = long, y = lat, fill = Prediction.index))+ | |
91 geom_raster(data = preds , aes(x = long, y = lat, alpha = Prediction.index))+ | |
92 scale_alpha(range = c(0,1), guide = "none")+ | |
93 scale_fill_viridis_c( | |
94 alpha = 1, | |
95 begin = 0, | |
96 end = 1, | |
97 direction = -1, | |
98 option = "D", | |
99 values = NULL, | |
100 space = "Lab", | |
101 na.value = "grey50", | |
102 guide = "colourbar", | |
103 aesthetics = "fill")+ | |
104 xlab("Longitude") + ylab("Latitude")+ ggtitle(paste(spe,"Plot of BRT predictions"))+ | |
105 theme(plot.title = element_text(size = 10))+ | |
106 theme(axis.title.y = element_text(size = 10))+ | |
107 theme(axis.title.x = element_text(size = 10))+ | |
108 theme(axis.text.y = element_text(size = 10))+ | |
109 theme(axis.text.x = element_text(size = 10))+ | |
110 theme(legend.text = element_text(size = 10))+ | |
111 theme(legend.title = element_text(size = 10))+ | |
112 coord_quickmap() | |
113 output_directory <- ggsave(paste("BRT-",spe,"_pred_plot.png")) | |
114 | |
115 #Write prediction in a file | |
116 preds <- cbind(preds,spe) | |
117 write.table(preds, paste(nb_file,"_brts_pred_ceamarc.tsv",sep=""), quote=FALSE, dec=".", row.names=F, col.names=!file.exists(paste(nb_file,"_brts_pred_ceamarc.tsv",sep="")),append = T,sep="\t") | |
118 } | |
119 | |
120 #### RUN BRT #### | |
121 nb_file = 0 | |
122 | |
123 # Creating the %!in% operator | |
124 `%!in%` <- Negate(`%in%`) | |
125 | |
126 # Data file browsing | |
127 for (file in data_files[[1]]) { | |
128 | |
129 # Reading the file | |
130 species_data <- read.table(file, dec = dec_species, sep = "\t", header = TRUE, na.strings = "NA", colClasses = "numeric") | |
131 nb_file = nb_file + 1 | |
132 | |
133 # List to store species to predict | |
134 sp = list() | |
135 | |
136 # Selection of columns that are not in 'env' and that are not coordinates or stations | |
137 for (n in names(species_data)) { | |
138 if (n %!in% names(env) && n != 'station' && n != 'decimalLatitude' && n != 'decimalLongitude' && n!='lat' && n!='long'){ | |
139 sp = c(sp,n) | |
140 } | |
141 } | |
142 # Making predictions for each species | |
143 for (spe in sp){ | |
144 try(make.prediction.brt(make.brt(spe,species_data,pred.vars,env,nb_file))) | |
145 } | |
146 } | |
147 | |
148 #Display of abiotic parameters | |
149 cat("Here is the list of your abiotic parameters:\n") | |
150 cat(paste(pred.vars, collapse = ", "), "\n") | |
151 | |
152 |