Mercurial > repos > ecology > claraguess
comparison claraguess.R @ 0:52d4151e00d8 draft default tip
planemo upload for repository https://github.com/galaxyecology/tools-ecology/tree/master/tools/Ecoregionalization_workflow commit ced658540f05bb07e1e687af30a3fa4ea8e4803c
author | ecology |
---|---|
date | Wed, 28 May 2025 10:12:06 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:52d4151e00d8 |
---|---|
1 ##30/04/2025 | |
2 ##Jean Le Cras | |
3 ### Clustering with Clara algorithm with an option to determine the optimal number of clusters based on SIH index | |
4 | |
5 #load libraries | |
6 library(cluster) | |
7 library(dplyr) | |
8 library(tidyverse) | |
9 | |
10 #load arguments | |
11 args <- commandArgs(trailingOnly = TRUE) | |
12 if (length(args)==0) { | |
13 stop("This tool needs at least one argument") | |
14 } | |
15 | |
16 #load data | |
17 enviro_path <- args[1] | |
18 preds_path <- args[2] | |
19 taxas_path <- args[3] | |
20 type <- args[4] | |
21 k <- as.integer(args[5]) | |
22 metric <- args[6] | |
23 samples <- as.integer(args[7]) | |
24 env.data <- read.table(enviro_path, sep = "\t", header = TRUE, dec = ".", na.strings = "-9999") | |
25 | |
26 data_split = str_split(preds_path, ",") | |
27 preds.data = NULL | |
28 | |
29 for (i in 1:length(data_split[[1]])) { | |
30 df <- read.table(data_split[[1]][i], dec=".", sep="\t", header=T, na.strings="NA") | |
31 preds.data <- rbind(preds.data, df) | |
32 remove(df) | |
33 } | |
34 | |
35 names(preds.data) <- c("lat", "long", "pred", "taxa") | |
36 | |
37 development_traits <- str_split(readLines(taxas_path), "\t") | |
38 | |
39 #select the clara model with the optimal number of clusters | |
40 model <- NULL | |
41 | |
42 if (type == "auto") { | |
43 sih_scores <- c() | |
44 models <- list() | |
45 | |
46 for (i in 2:k) { | |
47 models[[i]] <- clara(preds.data$pred, i, metric = metric, samples = samples, stand = TRUE) | |
48 sih_scores[i] <- models[[i]]$silinfo$avg.width | |
49 } | |
50 png("sih_scores.png") | |
51 plot(2:k, sih_scores[2:k], type = "b", xlab = "Number of clusters", ylab = "SIH index") | |
52 dev.off() | |
53 | |
54 best_k <- which.max(sih_scores[3:k]) + 2 | |
55 model <- models[[best_k]] | |
56 k <- best_k | |
57 } else { | |
58 model <- clara(preds.data$pred, k, metric = metric, samples = samples, stand = TRUE) | |
59 } | |
60 | |
61 #saving results | |
62 png("silhouette_plot.png") | |
63 plot(silhouette(model), main = paste("Silhouette plot for k =", k)) | |
64 dev.off() | |
65 | |
66 data.test <- matrix(preds.data$pred, nrow = nrow(env.data), ncol = nrow(preds.data) / nrow(env.data)) | |
67 data.test <- data.frame(data.test) | |
68 names(data.test) <- unique(preds.data$development) | |
69 | |
70 full.data <- cbind(preds.data[1:nrow(data.test), 1:2], model$clustering) | |
71 names(full.data) <- c("lat", "long", "cluster") | |
72 full.data <- cbind(full.data, data.test, env.data[, 3:ncol(env.data)]) | |
73 | |
74 write.table(full.data[1:3], file = "data_cluster.tabular", quote = FALSE, sep = "\t", row.names = FALSE) | |
75 write.table(full.data, file = "clustered_taxas_env.tabular", quote = FALSE, sep = "\t", row.names = FALSE) |