Mercurial > repos > dfornika > mob_suite
diff distance_matrix_phylip.py @ 38:17a60dd45b31 draft
"planemo upload for repository https://github.com/phac-nml/mob-suite commit 608abbed8881523f97c0378e350f32243a754237-dirty"
author | dfornika |
---|---|
date | Wed, 30 Oct 2019 23:38:12 -0400 |
parents | 115b462224cf |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/distance_matrix_phylip.py Wed Oct 30 23:38:12 2019 -0400 @@ -0,0 +1,69 @@ +#!/usr/bin/env python + +import argparse +import sys +import csv +import numpy as np + +from Bio.Phylo.TreeConstruction import DistanceMatrix, DistanceTreeConstructor + + +def process_input_matrix(input_matrix): + """ Converts an array-of-arrays containting sample IDs and distances + into a BioPython DistanceMatrix object + """ + input_matrix.pop(0) + sample_names = [row[0] for row in input_matrix] + for row in input_matrix: + row.pop(0) + distance_matrix = [] + for input_matrix_row in input_matrix: + distance_matrix.append([float(i) for i in input_matrix_row]) + """ np.tril() converts a matrix like this: [[0 1 2] + [1 0 1] + [2 1 0]] + ...into this: [[0 0 0] + [1 0 0] + [2 1 0]] + ...but what we need to pass to DistanceMatrix() is this: [[0] + [1 0] + [2 1 0]] + ...so that's what the (somewhat cryptic) code below does. + """ + distance_matrix = np.tril(np.array(distance_matrix)) + num_rows = distance_matrix.shape[0] + """ masking the distance matrix with tril_indices gives a linearized + distance matrix [0 1 0 2 1 0] that we need to re-construct + into [[0], [1, 0], [2, 1, 0]] + """ + lower_triangular_idx_mask = np.tril_indices(num_rows) + linear_distance_matrix = distance_matrix[lower_triangular_idx_mask] + distance_matrix = [] + min = 0 + max = 1 + for i in range(num_rows): + distance_matrix.append(linear_distance_matrix[min:max].tolist()) + min = max + max = max + (i + 2) + + distance_matrix = DistanceMatrix(names=sample_names, matrix=distance_matrix) + + return distance_matrix + +def main(): + parser = argparse.ArgumentParser() + parser.add_argument("--input", dest="input", help="") + args = parser.parse_args() + + reader = csv.reader(open(args.input, "r"), delimiter="\t") + input_matrix = list(reader) + # Don't build a tree with fewer than 3 samples, just produce an empty file + if len(input_matrix) < 4: + print('();') + sys.exit(0) + distance_matrix = process_input_matrix(input_matrix) + distance_matrix.format_phylip(sys.stdout) + + +if __name__ == '__main__': + main()