Mercurial > repos > devteam > best_regression_subsets
comparison best_regression_subsets.py @ 0:2bb8843930ac
Imported from capsule None
author | devteam |
---|---|
date | Tue, 01 Apr 2014 09:12:24 -0400 |
parents | |
children | 4b84b5118705 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:2bb8843930ac |
---|---|
1 #!/usr/bin/env python | |
2 | |
3 from galaxy import eggs | |
4 | |
5 import sys | |
6 from rpy import * | |
7 import numpy | |
8 | |
9 def stop_err(msg): | |
10 sys.stderr.write(msg) | |
11 sys.exit() | |
12 | |
13 | |
14 infile = sys.argv[1] | |
15 y_col = int(sys.argv[2])-1 | |
16 x_cols = sys.argv[3].split(',') | |
17 outfile = sys.argv[4] | |
18 outfile2 = sys.argv[5] | |
19 print "Predictor columns: %s; Response column: %d" % ( x_cols, y_col+1 ) | |
20 fout = open(outfile,'w') | |
21 | |
22 for i, line in enumerate( file ( infile )): | |
23 line = line.rstrip('\r\n') | |
24 if len( line )>0 and not line.startswith( '#' ): | |
25 elems = line.split( '\t' ) | |
26 break | |
27 if i == 30: | |
28 break # Hopefully we'll never get here... | |
29 | |
30 if len( elems )<1: | |
31 stop_err( "The data in your input dataset is either missing or not formatted properly." ) | |
32 | |
33 y_vals = [] | |
34 x_vals = [] | |
35 | |
36 for k, col in enumerate(x_cols): | |
37 x_cols[k] = int(col)-1 | |
38 x_vals.append([]) | |
39 | |
40 NA = 'NA' | |
41 for ind, line in enumerate( file( infile ) ): | |
42 if line and not line.startswith( '#' ): | |
43 try: | |
44 fields = line.split("\t") | |
45 try: | |
46 yval = float(fields[y_col]) | |
47 except Exception, ey: | |
48 yval = r('NA') | |
49 y_vals.append(yval) | |
50 for k, col in enumerate(x_cols): | |
51 try: | |
52 xval = float(fields[col]) | |
53 except Exception, ex: | |
54 xval = r('NA') | |
55 x_vals[k].append(xval) | |
56 except: | |
57 pass | |
58 | |
59 response_term = "" | |
60 | |
61 x_vals1 = numpy.asarray(x_vals).transpose() | |
62 | |
63 dat = r.list(x=array(x_vals1), y=y_vals) | |
64 | |
65 r.library("leaps") | |
66 | |
67 set_default_mode(NO_CONVERSION) | |
68 try: | |
69 leaps = r.regsubsets(r("y ~ x"), data= r.na_exclude(dat)) | |
70 except RException, rex: | |
71 stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain no numeric values.") | |
72 set_default_mode(BASIC_CONVERSION) | |
73 | |
74 summary = r.summary(leaps) | |
75 tot = len(x_vals) | |
76 pattern = "[" | |
77 for i in range(tot): | |
78 pattern = pattern + 'c' + str(int(x_cols[int(i)]) + 1) + ' ' | |
79 pattern = pattern.strip() + ']' | |
80 print >> fout, "#Vars\t%s\tR-sq\tAdj. R-sq\tC-p\tbic" % (pattern) | |
81 for ind, item in enumerate(summary['outmat']): | |
82 print >> fout, "%s\t%s\t%s\t%s\t%s\t%s" % (str(item).count('*'), item, summary['rsq'][ind], summary['adjr2'][ind], summary['cp'][ind], summary['bic'][ind]) | |
83 | |
84 | |
85 r.pdf( outfile2, 8, 8 ) | |
86 r.plot(leaps, scale="Cp", main="Best subsets using Cp Criterion") | |
87 r.plot(leaps, scale="r2", main="Best subsets using R-sq Criterion") | |
88 r.plot(leaps, scale="adjr2", main="Best subsets using Adjusted R-sq Criterion") | |
89 r.plot(leaps, scale="bic", main="Best subsets using bic Criterion") | |
90 | |
91 r.dev_off() |