Mercurial > repos > davidvanzessen > test_plotting_merged
comparison RScript.r @ 5:021d293121bb draft
Uploaded
| author | davidvanzessen |
|---|---|
| date | Mon, 14 Oct 2013 09:49:29 -0400 |
| parents | 10cfa5e9186e |
| children | f9a657db7af5 |
comparison
equal
deleted
inserted
replaced
| 4:10cfa5e9186e | 5:021d293121bb |
|---|---|
| 106 pJ | 106 pJ |
| 107 dev.off(); | 107 dev.off(); |
| 108 | 108 |
| 109 | 109 |
| 110 plotVD <- function(dat){ | 110 plotVD <- function(dat){ |
| 111 #dat = dat[order(dat[,8],dat[,9]),] | |
| 111 img = ggplot() + | 112 img = ggplot() + |
| 112 geom_tile(data=dat, aes(x=factor(Top.D.Gene), y=factor(Top.V.Gene), fill=log)) + | 113 geom_tile(data=dat, aes(x=factor(reorder(Top.D.Gene, chr.orderD)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=log)) + |
| 113 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | 114 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + |
| 114 scale_fill_gradient(low="gold", high="blue", na.value="white") + | 115 scale_fill_gradient(low="gold", high="blue", na.value="white") + |
| 115 ggtitle(unique(dat$Sample)) + | 116 ggtitle(unique(dat$Sample)) + |
| 116 xlab("D genes") + | 117 xlab("D genes") + |
| 117 ylab("V Genes") | 118 ylab("V Genes") |
| 126 cartegianProductVD = expand.grid(Top.V.Gene = Vchain$v.name, Top.D.Gene = Dchain$v.name, Sample = unique(test$Sample)) | 127 cartegianProductVD = expand.grid(Top.V.Gene = Vchain$v.name, Top.D.Gene = Dchain$v.name, Sample = unique(test$Sample)) |
| 127 | 128 |
| 128 completeVD = merge(VandDCount, cartegianProductVD, all.y=TRUE) | 129 completeVD = merge(VandDCount, cartegianProductVD, all.y=TRUE) |
| 129 completeVD$Length = as.numeric(completeVD$Length) | 130 completeVD$Length = as.numeric(completeVD$Length) |
| 130 completeVD$log = log(completeVD$Length) | 131 completeVD$log = log(completeVD$Length) |
| 132 completeVD = merge(completeVD, Vchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) | |
| 133 completeVD = merge(completeVD, Dchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) | |
| 131 #completeVD$log[is.na(completeVD$log)] = 0 | 134 #completeVD$log[is.na(completeVD$log)] = 0 |
| 132 l = split(completeVD, f=completeVD[,"Sample"]) | 135 l = split(completeVD, f=completeVD[,"Sample"]) |
| 133 | 136 |
| 134 lapply(l, FUN=plotVD) | 137 lapply(l, FUN=plotVD) |
| 135 | 138 |
| 136 | 139 |
| 137 | 140 |
| 138 plotVJ <- function(dat){ | 141 plotVJ <- function(dat){ |
| 142 #dat = dat[order(dat[,8],dat[,9]),] | |
| 139 img = ggplot() + | 143 img = ggplot() + |
| 140 geom_tile(data=dat, aes(x=factor(Top.J.Gene), y=factor(Top.V.Gene), fill=log)) + | 144 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=log)) + |
| 141 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | 145 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + |
| 142 scale_fill_gradient(low="gold", high="blue", na.value="white") + | 146 scale_fill_gradient(low="gold", high="blue", na.value="white") + |
| 143 ggtitle(unique(dat$Sample)) + | 147 ggtitle(unique(dat$Sample)) + |
| 144 xlab("J genes") + | 148 xlab("J genes") + |
| 145 ylab("V Genes") | 149 ylab("V Genes") |
| 153 cartegianProductVJ = expand.grid(Top.V.Gene = Vchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample)) | 157 cartegianProductVJ = expand.grid(Top.V.Gene = Vchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample)) |
| 154 | 158 |
| 155 completeVJ = merge(VandJCount, cartegianProductVJ, all.y=TRUE) | 159 completeVJ = merge(VandJCount, cartegianProductVJ, all.y=TRUE) |
| 156 completeVJ$Length = as.numeric(completeVJ$Length) | 160 completeVJ$Length = as.numeric(completeVJ$Length) |
| 157 completeVJ$log = log(completeVJ$Length) | 161 completeVJ$log = log(completeVJ$Length) |
| 162 completeVJ = merge(completeVJ, Vchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) | |
| 163 completeVJ = merge(completeVJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) | |
| 158 #completeVJ$log[is.na(completeVJ$log)] = 0 | 164 #completeVJ$log[is.na(completeVJ$log)] = 0 |
| 159 l = split(completeVJ, f=completeVJ[,"Sample"]) | 165 l = split(completeVJ, f=completeVJ[,"Sample"]) |
| 160 lapply(l, FUN=plotVJ) | 166 lapply(l, FUN=plotVJ) |
| 161 | 167 |
| 162 plotDJ <- function(dat){ | 168 plotDJ <- function(dat){ |
| 169 #dat = dat[order(dat[,8],dat[,9]),] | |
| 163 img = ggplot() + | 170 img = ggplot() + |
| 164 geom_tile(data=dat, aes(x=factor(Top.J.Gene), y=factor(Top.D.Gene), fill=log)) + | 171 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.D.Gene, chr.orderD)), fill=log)) + |
| 165 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | 172 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + |
| 166 scale_fill_gradient(low="gold", high="blue", na.value="white") + | 173 scale_fill_gradient(low="gold", high="blue", na.value="white") + |
| 167 ggtitle(unique(dat$Sample)) + | 174 ggtitle(unique(dat$Sample)) + |
| 168 xlab("J genes") + | 175 xlab("J genes") + |
| 169 ylab("D Genes") | 176 ylab("D Genes") |
| 177 cartegianProductDJ = expand.grid(Top.D.Gene = Dchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample)) | 184 cartegianProductDJ = expand.grid(Top.D.Gene = Dchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample)) |
| 178 | 185 |
| 179 completeDJ = merge(DandJCount, cartegianProductDJ, all.y=TRUE) | 186 completeDJ = merge(DandJCount, cartegianProductDJ, all.y=TRUE) |
| 180 completeDJ$Length = as.numeric(completeDJ$Length) | 187 completeDJ$Length = as.numeric(completeDJ$Length) |
| 181 completeDJ$log = log(completeDJ$Length) | 188 completeDJ$log = log(completeDJ$Length) |
| 189 completeDJ = merge(completeDJ, Dchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) | |
| 190 completeDJ = merge(completeDJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) | |
| 182 #completeDJ$log[is.na(completeDJ$log)] = 0 | 191 #completeDJ$log[is.na(completeDJ$log)] = 0 |
| 183 l = split(completeDJ, f=completeDJ[,"Sample"]) | 192 l = split(completeDJ, f=completeDJ[,"Sample"]) |
| 184 lapply(l, FUN=plotDJ) | 193 lapply(l, FUN=plotDJ) |
| 185 | 194 |
| 186 | 195 |
