Mercurial > repos > davidvanzessen > plotting_merged
comparison RScript.r @ 47:33ebd6f0d256 draft
Uploaded
| author | davidvanzessen |
|---|---|
| date | Mon, 02 Dec 2013 10:56:40 -0500 |
| parents | a2db27f58627 |
| children | 3da85f1a7f42 |
comparison
equal
deleted
inserted
replaced
| 46:a2db27f58627 | 47:33ebd6f0d256 |
|---|---|
| 1 options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) | 1 #options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) |
| 2 | 2 |
| 3 args <- commandArgs(trailingOnly = TRUE) | 3 args <- commandArgs(trailingOnly = TRUE) |
| 4 | 4 |
| 5 inFile = args[1] | 5 inFile = args[1] |
| 6 outFile = args[2] | 6 outFile = args[2] |
| 27 | 27 |
| 28 | 28 |
| 29 test = read.table(inFile, sep="\t", header=TRUE, fill=T) | 29 test = read.table(inFile, sep="\t", header=TRUE, fill=T) |
| 30 | 30 |
| 31 test = test[test$Sample != "",] | 31 test = test[test$Sample != "",] |
| 32 | |
| 33 if("Replicate" %in% colnames(test)) | |
| 34 { | |
| 35 test$SRID = do.call(paste, c(test[c("Sample", "Replicate")], sep = "-")) | |
| 36 } | |
| 37 | 32 |
| 38 test$Top.V.Gene = gsub("[*]([0-9]+)", "", test$Top.V.Gene) | 33 test$Top.V.Gene = gsub("[*]([0-9]+)", "", test$Top.V.Gene) |
| 39 test$Top.D.Gene = gsub("[*]([0-9]+)", "", test$Top.D.Gene) | 34 test$Top.D.Gene = gsub("[*]([0-9]+)", "", test$Top.D.Gene) |
| 40 test$Top.J.Gene = gsub("[*]([0-9]+)", "", test$Top.J.Gene) | 35 test$Top.J.Gene = gsub("[*]([0-9]+)", "", test$Top.J.Gene) |
| 41 | 36 |
| 72 Total = 0 | 67 Total = 0 |
| 73 Total = ddply(PRODFJ, .(Sample), function(x) data.frame(Total = sum(x$Length))) | 68 Total = ddply(PRODFJ, .(Sample), function(x) data.frame(Total = sum(x$Length))) |
| 74 PRODFJ = merge(PRODFJ, Total, by.x='Sample', by.y='Sample', all.x=TRUE) | 69 PRODFJ = merge(PRODFJ, Total, by.x='Sample', by.y='Sample', all.x=TRUE) |
| 75 PRODFJ = ddply(PRODFJ, c("Sample", "Top.J.Gene"), summarise, relFreq= (Length*100 / Total)) | 70 PRODFJ = ddply(PRODFJ, c("Sample", "Top.J.Gene"), summarise, relFreq= (Length*100 / Total)) |
| 76 | 71 |
| 77 V = c("v.name\tchr.orderV\nIGHV7-81\t1\nIGHV3-74\t2\nIGHV3-73\t3\nIGHV3-72\t4\nIGHV3-71\t5\nIGHV2-70\t6\nIGHV1-69\t7\nIGHV3-66\t8\nIGHV3-64\t9\nIGHV4-61\t10\nIGHV4-59\t11\nIGHV1-58\t12\nIGHV3-53\t13\nIGHV3-52\t14\nIGHV5-a\t15\nIGHV5-51\t16\nIGHV3-49\t17\nIGHV3-48\t18\nIGHV3-47\t19\nIGHV1-46\t20\nIGHV1-45\t21\nIGHV3-43\t22\nIGHV4-39\t23\nIGHV3-35\t24\nIGHV4-34\t25\nIGHV3-33\t26\nIGHV4-31\t27\nIGHV4-30-4\t28\nIGHV4-30-2\t29\nIGHV3-30-3\t30\nIGHV3-30\t31\nIGHV4-28\t32\nIGHV2-26\t33\nIGHV1-24\t34\nIGHV3-23\t35\nIGHV3-22\t36\nIGHV3-21\t37\nIGHV3-20\t38\nIGHV3-19\t39\nIGHV1-18\t40\nIGHV3-15\t41\nIGHV3-13\t42\nIGHV3-11\t43\nIGHV3-9\t44\nIGHV1-8\t45\nIGHV3-7\t46\nIGHV2-5\t47\nIGHV7-4-1\t48\nIGHV4-4\t49\nIGHV4-b\t50\nIGHV1-3\t51\nIGHV1-2\t52\nIGHV6-1\t53") | 72 V = c("v.name\tchr.orderV\nIGHV7-81\t1\nIGHV3-74\t2\nIGHV3-73\t3\nIGHV3-72\t4\nIGHV2-70\t6\nIGHV1-69\t7\nIGHV3-66\t8\nIGHV3-64\t9\nIGHV4-61\t10\nIGHV4-59\t11\nIGHV1-58\t12\nIGHV3-53\t13\nIGHV5-a\t15\nIGHV5-51\t16\nIGHV3-49\t17\nIGHV3-48\t18\nIGHV1-46\t20\nIGHV1-45\t21\nIGHV3-43\t22\nIGHV4-39\t23\nIGHV3-35\t24\nIGHV4-34\t25\nIGHV3-33\t26\nIGHV4-31\t27\nIGHV4-30-4\t28\nIGHV4-30-2\t29\nIGHV3-30-3\t30\nIGHV3-30\t31\nIGHV4-28\t32\nIGHV2-26\t33\nIGHV1-24\t34\nIGHV3-23\t35\nIGHV3-21\t37\nIGHV3-20\t38\nIGHV1-18\t40\nIGHV3-15\t41\nIGHV3-13\t42\nIGHV3-11\t43\nIGHV3-9\t44\nIGHV1-8\t45\nIGHV3-7\t46\nIGHV2-5\t47\nIGHV7-4-1\t48\nIGHV4-4\t49\nIGHV4-b\t50\nIGHV1-3\t51\nIGHV1-2\t52\nIGHV6-1\t53") |
| 78 tcV = textConnection(V) | 73 tcV = textConnection(V) |
| 79 Vchain = read.table(tcV, sep="\t", header=TRUE) | 74 Vchain = read.table(tcV, sep="\t", header=TRUE) |
| 80 PRODFV = merge(PRODFV, Vchain, by.x='Top.V.Gene', by.y='v.name', all.x=TRUE) | 75 PRODFV = merge(PRODFV, Vchain, by.x='Top.V.Gene', by.y='v.name', all.x=TRUE) |
| 81 close(tcV) | 76 close(tcV) |
| 82 | 77 |
| 129 return() | 124 return() |
| 130 } | 125 } |
| 131 img = ggplot() + | 126 img = ggplot() + |
| 132 geom_tile(data=dat, aes(x=factor(reorder(Top.D.Gene, chr.orderD)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + | 127 geom_tile(data=dat, aes(x=factor(reorder(Top.D.Gene, chr.orderD)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + |
| 133 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | 128 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + |
| 134 scale_fill_gradient(low="gold", high="blue", na.value="white", limits=c(0,1)) + | 129 scale_fill_gradient(low="gold", high="blue", na.value="white") + |
| 135 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | 130 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + |
| 136 xlab("D genes") + | 131 xlab("D genes") + |
| 137 ylab("V Genes") | 132 ylab("V Genes") |
| 138 | 133 |
| 139 png(paste("HeatmapVD_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Dchain$v.name)), height=100+(15*length(Vchain$v.name))) | 134 png(paste("HeatmapVD_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Dchain$v.name)), height=100+(15*length(Vchain$v.name))) |
| 164 return() | 159 return() |
| 165 } | 160 } |
| 166 img = ggplot() + | 161 img = ggplot() + |
| 167 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + | 162 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + |
| 168 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | 163 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + |
| 169 scale_fill_gradient(low="gold", high="blue", na.value="white", limits=c(0,1)) + | 164 scale_fill_gradient(low="gold", high="blue", na.value="white") + |
| 170 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | 165 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + |
| 171 xlab("J genes") + | 166 xlab("J genes") + |
| 172 ylab("V Genes") | 167 ylab("V Genes") |
| 173 | 168 |
| 174 png(paste("HeatmapVJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Vchain$v.name))) | 169 png(paste("HeatmapVJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Vchain$v.name))) |
| 196 return() | 191 return() |
| 197 } | 192 } |
| 198 img = ggplot() + | 193 img = ggplot() + |
| 199 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.D.Gene, chr.orderD)), fill=relLength)) + | 194 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.D.Gene, chr.orderD)), fill=relLength)) + |
| 200 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | 195 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + |
| 201 scale_fill_gradient(low="gold", high="blue", na.value="white", limits=c(0,1)) + | 196 scale_fill_gradient(low="gold", high="blue", na.value="white") + |
| 202 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | 197 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + |
| 203 xlab("J genes") + | 198 xlab("J genes") + |
| 204 ylab("D Genes") | 199 ylab("D Genes") |
| 205 | 200 |
| 206 png(paste("HeatmapDJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Dchain$v.name))) | 201 png(paste("HeatmapDJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Dchain$v.name))) |
| 227 sampleFile <- file("samples.txt") | 222 sampleFile <- file("samples.txt") |
| 228 un = unique(test$Sample) | 223 un = unique(test$Sample) |
| 229 un = paste(un, sep="\n") | 224 un = paste(un, sep="\n") |
| 230 writeLines(un, sampleFile) | 225 writeLines(un, sampleFile) |
| 231 close(sampleFile) | 226 close(sampleFile) |
| 227 | |
| 228 | |
| 229 if("Replicate" %in% colnames(test)) | |
| 230 { | |
| 231 clonalityFrame = PROD | |
| 232 clonalityFrame$ReplicateConcat = do.call(paste, c(clonalityFrame[c("VDJCDR3", "Sample", "Replicate")], sep = ":")) | |
| 233 clonalityFrame = clonalityFrame[!duplicated(clonalityFrame$ReplicateConcat), ] | |
| 234 clonalFreq = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "VDJCDR3")]) | |
| 235 clonalFreqCount = data.frame(data.table(clonalFreq)[, list(Count=.N), by=c("Sample", "Type")]) | |
| 236 clonalFreqCount$realCount = clonalFreqCount$Type * clonalFreqCount$Count | |
| 237 clonalSum = data.frame(data.table(clonalFreqCount)[, list(Reads=sum(realCount)), by=c("Sample")]) | |
| 238 clonalFreqCount = merge(clonalFreqCount, clonalSum, by.x="Sample", by.y="Sample") | |
| 239 | |
| 240 ct = c('Type\tWeight\n2\t1\n3\t3\n4\t6\n5\t10\n6\t15') | |
| 241 tcct = textConnection(ct) | |
| 242 CT = read.table(tcct, sep="\t", header=TRUE) | |
| 243 close(tcct) | |
| 244 clonalFreqCount = merge(clonalFreqCount, CT, by.x="Type", by.y="Type", all.x=T) | |
| 245 clonalFreqCount$WeightedCount = clonalFreqCount$Count * clonalFreqCount$Weight | |
| 246 | |
| 247 ReplicateReads = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "Replicate", "VDJCDR3")]) | |
| 248 ReplicateReads = data.frame(data.table(ReplicateReads)[, list(Reads=.N), by=c("Sample", "Replicate")]) | |
| 249 ReplicateReads$squared = ReplicateReads$Reads * ReplicateReads$Reads | |
| 250 | |
| 251 ReplicatePrint <- function(dat){ | |
| 252 write.table(dat[-1], paste("ReplicateReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
| 253 } | |
| 254 | |
| 255 ReplicateSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) | |
| 256 lapply(ReplicateSplit, FUN=ReplicatePrint) | |
| 257 | |
| 258 ReplicateReads = data.frame(data.table(ReplicateReads)[, list(ReadsSum=sum(Reads), ReadsSquaredSum=sum(squared)), by=c("Sample")]) | |
| 259 clonalFreqCount = merge(clonalFreqCount, ReplicateReads, by.x="Sample", by.y="Sample", all.x=T) | |
| 260 | |
| 261 | |
| 262 ReplicateSumPrint <- function(dat){ | |
| 263 write.table(dat[-1], paste("ReplicateSumReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
| 264 } | |
| 265 | |
| 266 ReplicateSumSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) | |
| 267 lapply(ReplicateSumSplit, FUN=ReplicateSumPrint) | |
| 268 | |
| 269 clonalFreqCountSum = data.frame(data.table(clonalFreqCount)[, list(Numerator=sum(WeightedCount, na.rm=T)), by=c("Sample")]) | |
| 270 clonalFreqCount = merge(clonalFreqCount, clonalFreqCountSum, by.x="Sample", by.y="Sample", all.x=T) | |
| 271 | |
| 272 clonalFreqCount$Denominator = (((clonalFreqCount$ReadsSum * clonalFreqCount$ReadsSum) - clonalFreqCount$ReadsSquaredSum) / 2) | |
| 273 clonalFreqCount$Result = (clonalFreqCount$Numerator + 1) / (clonalFreqCount$Denominator + 1) | |
| 274 | |
| 275 ClonalityScorePrint <- function(dat){ | |
| 276 write.table(dat$Result, paste("ClonalityScore_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
| 277 } | |
| 278 | |
| 279 clonalityScore = clonalFreqCount[c("Sample", "Result")] | |
| 280 clonalityScore = unique(clonalityScore) | |
| 281 | |
| 282 clonalityScoreSplit = split(clonalityScore, f=clonalityScore[,"Sample"]) | |
| 283 lapply(clonalityScoreSplit, FUN=ClonalityScorePrint) | |
| 284 | |
| 285 clonalityOverview = clonalFreqCount[c("Sample", "Type", "Count", "Weight", "WeightedCount")] | |
| 286 | |
| 287 | |
| 288 | |
| 289 ClonalityOverviewPrint <- function(dat){ | |
| 290 write.table(dat[-1], paste("ClonalityOverView_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
| 291 } | |
| 292 | |
| 293 clonalityOverviewSplit = split(clonalityOverview, f=clonalityOverview$Sample) | |
| 294 lapply(clonalityOverviewSplit, FUN=ClonalityOverviewPrint) | |
| 295 } |
