Mercurial > repos > davidvanzessen > plotting_merged
comparison RScript.r @ 47:33ebd6f0d256 draft
Uploaded
author | davidvanzessen |
---|---|
date | Mon, 02 Dec 2013 10:56:40 -0500 |
parents | a2db27f58627 |
children | 3da85f1a7f42 |
comparison
equal
deleted
inserted
replaced
46:a2db27f58627 | 47:33ebd6f0d256 |
---|---|
1 options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) | 1 #options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) |
2 | 2 |
3 args <- commandArgs(trailingOnly = TRUE) | 3 args <- commandArgs(trailingOnly = TRUE) |
4 | 4 |
5 inFile = args[1] | 5 inFile = args[1] |
6 outFile = args[2] | 6 outFile = args[2] |
27 | 27 |
28 | 28 |
29 test = read.table(inFile, sep="\t", header=TRUE, fill=T) | 29 test = read.table(inFile, sep="\t", header=TRUE, fill=T) |
30 | 30 |
31 test = test[test$Sample != "",] | 31 test = test[test$Sample != "",] |
32 | |
33 if("Replicate" %in% colnames(test)) | |
34 { | |
35 test$SRID = do.call(paste, c(test[c("Sample", "Replicate")], sep = "-")) | |
36 } | |
37 | 32 |
38 test$Top.V.Gene = gsub("[*]([0-9]+)", "", test$Top.V.Gene) | 33 test$Top.V.Gene = gsub("[*]([0-9]+)", "", test$Top.V.Gene) |
39 test$Top.D.Gene = gsub("[*]([0-9]+)", "", test$Top.D.Gene) | 34 test$Top.D.Gene = gsub("[*]([0-9]+)", "", test$Top.D.Gene) |
40 test$Top.J.Gene = gsub("[*]([0-9]+)", "", test$Top.J.Gene) | 35 test$Top.J.Gene = gsub("[*]([0-9]+)", "", test$Top.J.Gene) |
41 | 36 |
72 Total = 0 | 67 Total = 0 |
73 Total = ddply(PRODFJ, .(Sample), function(x) data.frame(Total = sum(x$Length))) | 68 Total = ddply(PRODFJ, .(Sample), function(x) data.frame(Total = sum(x$Length))) |
74 PRODFJ = merge(PRODFJ, Total, by.x='Sample', by.y='Sample', all.x=TRUE) | 69 PRODFJ = merge(PRODFJ, Total, by.x='Sample', by.y='Sample', all.x=TRUE) |
75 PRODFJ = ddply(PRODFJ, c("Sample", "Top.J.Gene"), summarise, relFreq= (Length*100 / Total)) | 70 PRODFJ = ddply(PRODFJ, c("Sample", "Top.J.Gene"), summarise, relFreq= (Length*100 / Total)) |
76 | 71 |
77 V = c("v.name\tchr.orderV\nIGHV7-81\t1\nIGHV3-74\t2\nIGHV3-73\t3\nIGHV3-72\t4\nIGHV3-71\t5\nIGHV2-70\t6\nIGHV1-69\t7\nIGHV3-66\t8\nIGHV3-64\t9\nIGHV4-61\t10\nIGHV4-59\t11\nIGHV1-58\t12\nIGHV3-53\t13\nIGHV3-52\t14\nIGHV5-a\t15\nIGHV5-51\t16\nIGHV3-49\t17\nIGHV3-48\t18\nIGHV3-47\t19\nIGHV1-46\t20\nIGHV1-45\t21\nIGHV3-43\t22\nIGHV4-39\t23\nIGHV3-35\t24\nIGHV4-34\t25\nIGHV3-33\t26\nIGHV4-31\t27\nIGHV4-30-4\t28\nIGHV4-30-2\t29\nIGHV3-30-3\t30\nIGHV3-30\t31\nIGHV4-28\t32\nIGHV2-26\t33\nIGHV1-24\t34\nIGHV3-23\t35\nIGHV3-22\t36\nIGHV3-21\t37\nIGHV3-20\t38\nIGHV3-19\t39\nIGHV1-18\t40\nIGHV3-15\t41\nIGHV3-13\t42\nIGHV3-11\t43\nIGHV3-9\t44\nIGHV1-8\t45\nIGHV3-7\t46\nIGHV2-5\t47\nIGHV7-4-1\t48\nIGHV4-4\t49\nIGHV4-b\t50\nIGHV1-3\t51\nIGHV1-2\t52\nIGHV6-1\t53") | 72 V = c("v.name\tchr.orderV\nIGHV7-81\t1\nIGHV3-74\t2\nIGHV3-73\t3\nIGHV3-72\t4\nIGHV2-70\t6\nIGHV1-69\t7\nIGHV3-66\t8\nIGHV3-64\t9\nIGHV4-61\t10\nIGHV4-59\t11\nIGHV1-58\t12\nIGHV3-53\t13\nIGHV5-a\t15\nIGHV5-51\t16\nIGHV3-49\t17\nIGHV3-48\t18\nIGHV1-46\t20\nIGHV1-45\t21\nIGHV3-43\t22\nIGHV4-39\t23\nIGHV3-35\t24\nIGHV4-34\t25\nIGHV3-33\t26\nIGHV4-31\t27\nIGHV4-30-4\t28\nIGHV4-30-2\t29\nIGHV3-30-3\t30\nIGHV3-30\t31\nIGHV4-28\t32\nIGHV2-26\t33\nIGHV1-24\t34\nIGHV3-23\t35\nIGHV3-21\t37\nIGHV3-20\t38\nIGHV1-18\t40\nIGHV3-15\t41\nIGHV3-13\t42\nIGHV3-11\t43\nIGHV3-9\t44\nIGHV1-8\t45\nIGHV3-7\t46\nIGHV2-5\t47\nIGHV7-4-1\t48\nIGHV4-4\t49\nIGHV4-b\t50\nIGHV1-3\t51\nIGHV1-2\t52\nIGHV6-1\t53") |
78 tcV = textConnection(V) | 73 tcV = textConnection(V) |
79 Vchain = read.table(tcV, sep="\t", header=TRUE) | 74 Vchain = read.table(tcV, sep="\t", header=TRUE) |
80 PRODFV = merge(PRODFV, Vchain, by.x='Top.V.Gene', by.y='v.name', all.x=TRUE) | 75 PRODFV = merge(PRODFV, Vchain, by.x='Top.V.Gene', by.y='v.name', all.x=TRUE) |
81 close(tcV) | 76 close(tcV) |
82 | 77 |
129 return() | 124 return() |
130 } | 125 } |
131 img = ggplot() + | 126 img = ggplot() + |
132 geom_tile(data=dat, aes(x=factor(reorder(Top.D.Gene, chr.orderD)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + | 127 geom_tile(data=dat, aes(x=factor(reorder(Top.D.Gene, chr.orderD)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + |
133 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | 128 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + |
134 scale_fill_gradient(low="gold", high="blue", na.value="white", limits=c(0,1)) + | 129 scale_fill_gradient(low="gold", high="blue", na.value="white") + |
135 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | 130 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + |
136 xlab("D genes") + | 131 xlab("D genes") + |
137 ylab("V Genes") | 132 ylab("V Genes") |
138 | 133 |
139 png(paste("HeatmapVD_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Dchain$v.name)), height=100+(15*length(Vchain$v.name))) | 134 png(paste("HeatmapVD_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Dchain$v.name)), height=100+(15*length(Vchain$v.name))) |
164 return() | 159 return() |
165 } | 160 } |
166 img = ggplot() + | 161 img = ggplot() + |
167 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + | 162 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + |
168 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | 163 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + |
169 scale_fill_gradient(low="gold", high="blue", na.value="white", limits=c(0,1)) + | 164 scale_fill_gradient(low="gold", high="blue", na.value="white") + |
170 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | 165 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + |
171 xlab("J genes") + | 166 xlab("J genes") + |
172 ylab("V Genes") | 167 ylab("V Genes") |
173 | 168 |
174 png(paste("HeatmapVJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Vchain$v.name))) | 169 png(paste("HeatmapVJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Vchain$v.name))) |
196 return() | 191 return() |
197 } | 192 } |
198 img = ggplot() + | 193 img = ggplot() + |
199 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.D.Gene, chr.orderD)), fill=relLength)) + | 194 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.D.Gene, chr.orderD)), fill=relLength)) + |
200 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | 195 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + |
201 scale_fill_gradient(low="gold", high="blue", na.value="white", limits=c(0,1)) + | 196 scale_fill_gradient(low="gold", high="blue", na.value="white") + |
202 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | 197 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + |
203 xlab("J genes") + | 198 xlab("J genes") + |
204 ylab("D Genes") | 199 ylab("D Genes") |
205 | 200 |
206 png(paste("HeatmapDJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Dchain$v.name))) | 201 png(paste("HeatmapDJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Dchain$v.name))) |
227 sampleFile <- file("samples.txt") | 222 sampleFile <- file("samples.txt") |
228 un = unique(test$Sample) | 223 un = unique(test$Sample) |
229 un = paste(un, sep="\n") | 224 un = paste(un, sep="\n") |
230 writeLines(un, sampleFile) | 225 writeLines(un, sampleFile) |
231 close(sampleFile) | 226 close(sampleFile) |
227 | |
228 | |
229 if("Replicate" %in% colnames(test)) | |
230 { | |
231 clonalityFrame = PROD | |
232 clonalityFrame$ReplicateConcat = do.call(paste, c(clonalityFrame[c("VDJCDR3", "Sample", "Replicate")], sep = ":")) | |
233 clonalityFrame = clonalityFrame[!duplicated(clonalityFrame$ReplicateConcat), ] | |
234 clonalFreq = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "VDJCDR3")]) | |
235 clonalFreqCount = data.frame(data.table(clonalFreq)[, list(Count=.N), by=c("Sample", "Type")]) | |
236 clonalFreqCount$realCount = clonalFreqCount$Type * clonalFreqCount$Count | |
237 clonalSum = data.frame(data.table(clonalFreqCount)[, list(Reads=sum(realCount)), by=c("Sample")]) | |
238 clonalFreqCount = merge(clonalFreqCount, clonalSum, by.x="Sample", by.y="Sample") | |
239 | |
240 ct = c('Type\tWeight\n2\t1\n3\t3\n4\t6\n5\t10\n6\t15') | |
241 tcct = textConnection(ct) | |
242 CT = read.table(tcct, sep="\t", header=TRUE) | |
243 close(tcct) | |
244 clonalFreqCount = merge(clonalFreqCount, CT, by.x="Type", by.y="Type", all.x=T) | |
245 clonalFreqCount$WeightedCount = clonalFreqCount$Count * clonalFreqCount$Weight | |
246 | |
247 ReplicateReads = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "Replicate", "VDJCDR3")]) | |
248 ReplicateReads = data.frame(data.table(ReplicateReads)[, list(Reads=.N), by=c("Sample", "Replicate")]) | |
249 ReplicateReads$squared = ReplicateReads$Reads * ReplicateReads$Reads | |
250 | |
251 ReplicatePrint <- function(dat){ | |
252 write.table(dat[-1], paste("ReplicateReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
253 } | |
254 | |
255 ReplicateSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) | |
256 lapply(ReplicateSplit, FUN=ReplicatePrint) | |
257 | |
258 ReplicateReads = data.frame(data.table(ReplicateReads)[, list(ReadsSum=sum(Reads), ReadsSquaredSum=sum(squared)), by=c("Sample")]) | |
259 clonalFreqCount = merge(clonalFreqCount, ReplicateReads, by.x="Sample", by.y="Sample", all.x=T) | |
260 | |
261 | |
262 ReplicateSumPrint <- function(dat){ | |
263 write.table(dat[-1], paste("ReplicateSumReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
264 } | |
265 | |
266 ReplicateSumSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) | |
267 lapply(ReplicateSumSplit, FUN=ReplicateSumPrint) | |
268 | |
269 clonalFreqCountSum = data.frame(data.table(clonalFreqCount)[, list(Numerator=sum(WeightedCount, na.rm=T)), by=c("Sample")]) | |
270 clonalFreqCount = merge(clonalFreqCount, clonalFreqCountSum, by.x="Sample", by.y="Sample", all.x=T) | |
271 | |
272 clonalFreqCount$Denominator = (((clonalFreqCount$ReadsSum * clonalFreqCount$ReadsSum) - clonalFreqCount$ReadsSquaredSum) / 2) | |
273 clonalFreqCount$Result = (clonalFreqCount$Numerator + 1) / (clonalFreqCount$Denominator + 1) | |
274 | |
275 ClonalityScorePrint <- function(dat){ | |
276 write.table(dat$Result, paste("ClonalityScore_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
277 } | |
278 | |
279 clonalityScore = clonalFreqCount[c("Sample", "Result")] | |
280 clonalityScore = unique(clonalityScore) | |
281 | |
282 clonalityScoreSplit = split(clonalityScore, f=clonalityScore[,"Sample"]) | |
283 lapply(clonalityScoreSplit, FUN=ClonalityScorePrint) | |
284 | |
285 clonalityOverview = clonalFreqCount[c("Sample", "Type", "Count", "Weight", "WeightedCount")] | |
286 | |
287 | |
288 | |
289 ClonalityOverviewPrint <- function(dat){ | |
290 write.table(dat[-1], paste("ClonalityOverView_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
291 } | |
292 | |
293 clonalityOverviewSplit = split(clonalityOverview, f=clonalityOverview$Sample) | |
294 lapply(clonalityOverviewSplit, FUN=ClonalityOverviewPrint) | |
295 } |