Mercurial > repos > davidvanzessen > mutation_analysis
changeset 65:ae8b721a2964 draft
Uploaded
author | davidvanzessen |
---|---|
date | Mon, 04 Apr 2016 04:25:46 -0400 |
parents | 0fdd90f7c654 |
children | 88e0e7665086 |
files | merge_and_filter.r mutation_analysis.py.bak mutation_analysis.r.bak |
diffstat | 3 files changed, 3 insertions(+), 721 deletions(-) [+] |
line wrap: on
line diff
--- a/merge_and_filter.r Fri Apr 01 08:54:24 2016 -0400 +++ b/merge_and_filter.r Mon Apr 04 04:25:46 2016 -0400 @@ -103,14 +103,13 @@ } else { result$unique.def = paste(result$CDR1.IMGT, result$CDR2.IMGT, result$CDR3.IMGT, result$FR2.IMGT, result$FR3.IMGT) } - result.filtered = result[duplicated(result$unique.def) | duplicated(result$unique.def, fromLast=T),] - fltr = result$Sequence.ID %in% result.filtered$Sequence.ID + #fltr = result$unique.def %in% result.filtered$unique.def if(grepl("keep", filter_unique)){ - result = result[!fltr,] + result = result[!duplicated(result$unique.def),] } else { - result = result[fltr,] + result = result[duplicated(result$unique.def) | duplicated(result$unique.def, fromLast=T),] result = result[!duplicated(result$unique.def),] }
--- a/mutation_analysis.py.bak Fri Apr 01 08:54:24 2016 -0400 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,248 +0,0 @@ -from collections import defaultdict -import re -import argparse - -parser = argparse.ArgumentParser() -parser.add_argument("--input", - help="The '7_V-REGION-mutation-and-AA-change-table' and '10_V-REGION-mutation-hotspots' merged together, with an added 'best_match' annotation") -parser.add_argument("--genes", help="The genes available in the 'best_match' column") -parser.add_argument("--includefr1", help="The genes available in the 'best_match' column") -parser.add_argument("--output", help="Output file") - -args = parser.parse_args() - -infile = args.input -genes = str(args.genes).split(",") -print "includefr1 =", args.includefr1 -include_fr1 = True if args.includefr1 == "yes" else False -outfile = args.output - -genedic = dict() - -mutationdic = dict() -mutationMatcher = re.compile("^(.)(\d+).(.),?(.)?(\d+)?.?(.)?(.?.?.?.?.?)?") -linecount = 0 - -IDIndex = 0 -best_matchIndex = 0 -fr1Index = 0 -cdr1Index = 0 -fr2Index = 0 -cdr2Index = 0 -fr3Index = 0 -first = True -IDlist = [] -mutationList = [] -mutationListByID = {} -cdr1LengthDic = {} -cdr2LengthDic = {} - -with open(infile, 'r') as i: - for line in i: - if first: - linesplt = line.split("\t") - IDIndex = linesplt.index("Sequence.ID") - best_matchIndex = linesplt.index("best_match") - fr1Index = linesplt.index("FR1.IMGT") - cdr1Index = linesplt.index("CDR1.IMGT") - fr2Index = linesplt.index("FR2.IMGT") - cdr2Index = linesplt.index("CDR2.IMGT") - fr3Index = linesplt.index("FR3.IMGT") - cdr1LengthIndex = linesplt.index("CDR1.IMGT.Nb.of.nucleotides") - cdr2LengthIndex = linesplt.index("CDR2.IMGT.Nb.of.nucleotides") - first = False - continue - linecount += 1 - linesplt = line.split("\t") - ID = linesplt[IDIndex] - genedic[ID] = linesplt[best_matchIndex] - mutationdic[ID + "_FR1"] = [mutationMatcher.match(x).groups() for x in linesplt[fr1Index].split("|") if x] if include_fr1 else [] - mutationdic[ID + "_CDR1"] = [mutationMatcher.match(x).groups() for x in linesplt[cdr1Index].split("|") if x] - mutationdic[ID + "_FR2"] = [mutationMatcher.match(x).groups() for x in linesplt[fr2Index].split("|") if x] - mutationdic[ID + "_CDR2"] = [mutationMatcher.match(x).groups() for x in linesplt[cdr2Index].split("|") if x] - mutationdic[ID + "_FR2-CDR2"] = mutationdic[ID + "_FR2"] + mutationdic[ID + "_CDR2"] - mutationdic[ID + "_FR3"] = [mutationMatcher.match(x).groups() for x in linesplt[fr3Index].split("|") if x] - - mutationList += mutationdic[ID + "_FR1"] + mutationdic[ID + "_CDR1"] + mutationdic[ID + "_FR2"] + mutationdic[ID + "_CDR2"] + mutationdic[ID + "_FR3"] - mutationListByID[ID] = mutationdic[ID + "_FR1"] + mutationdic[ID + "_CDR1"] + mutationdic[ID + "_FR2"] + mutationdic[ID + "_CDR2"] + mutationdic[ID + "_FR3"] - - cdr1Length = linesplt[cdr1LengthIndex] - cdr2Length = linesplt[cdr2LengthIndex] - - cdr1LengthDic[ID] = int(cdr1Length) / 3 - cdr2LengthDic[ID] = int(cdr2Length) / 3 - - IDlist += [ID] - -AALength = (int(max(mutationList, key=lambda i: int(i[4]) if i[4] else 0)[4]) + 1) # [4] is the position of the AA mutation, None if silent - -AA_mutation = [0] * AALength -AA_mutation_empty = AA_mutation[:] - -aa_mutations_by_id_file = outfile[:outfile.rindex("/")] + "/aa_id_mutations.txt" -with open(aa_mutations_by_id_file, 'w') as o: - for ID in mutationListByID.keys(): - AA_mutation_for_ID = AA_mutation_empty[:] - for mutation in mutationListByID[ID]: - if mutation[4]: - AA_mutation[int(mutation[4])] += 1 - AA_mutation_for_ID[int(mutation[4])] += 1 - o.write(ID + "\t" + "\t".join([str(x) for x in AA_mutation_for_ID[1:]]) + "\n") - - - -#absent AA stuff -absentAACDR1Dic = defaultdict(list) -absentAACDR1Dic[5] = range(29,36) -absentAACDR1Dic[6] = range(29,35) -absentAACDR1Dic[7] = range(30,35) -absentAACDR1Dic[8] = range(30,34) -absentAACDR1Dic[9] = range(31,34) -absentAACDR1Dic[10] = range(31,33) -absentAACDR1Dic[11] = [32] - -absentAACDR2Dic = defaultdict(list) -absentAACDR2Dic[0] = range(55,65) -absentAACDR2Dic[1] = range(56,65) -absentAACDR2Dic[2] = range(56,64) -absentAACDR2Dic[3] = range(57,64) -absentAACDR2Dic[4] = range(57,63) -absentAACDR2Dic[5] = range(58,63) -absentAACDR2Dic[6] = range(58,62) -absentAACDR2Dic[7] = range(59,62) -absentAACDR2Dic[8] = range(59,61) -absentAACDR2Dic[9] = [60] - -absentAA = [len(IDlist)] * (AALength-1) -for k, cdr1Length in cdr1LengthDic.iteritems(): - for c in absentAACDR1Dic[cdr1Length]: - absentAA[c] -= 1 - -for k, cdr2Length in cdr2LengthDic.iteritems(): - for c in absentAACDR2Dic[cdr2Length]: - absentAA[c] -= 1 - - -aa_mutations_by_id_file = outfile[:outfile.rindex("/")] + "/absent_aa_id.txt" -with open(aa_mutations_by_id_file, 'w') as o: - o.write("ID\tcdr1length\tcdr2length\t" + "\t".join([str(x) for x in range(1,AALength-1)]) + "\n") - for ID in IDlist: - absentAAbyID = [1] * (AALength-1) - cdr1Length = cdr1LengthDic[ID] - for c in absentAACDR1Dic[cdr1Length]: - absentAAbyID[c] -= 1 - - cdr2Length = cdr2LengthDic[ID] - for c in absentAACDR2Dic[cdr2Length]: - absentAAbyID[c] -= 1 - o.write(ID + "\t" + str(cdr1Length) + "\t" + str(cdr2Length) + "\t" + "\t".join([str(x) for x in absentAAbyID]) + "\n") - - - -aa_mutations_file = outfile[:outfile.rindex("/")] + "/aa_mutations.txt" -with open(aa_mutations_file, 'w') as o: - o.write("row.name\t" + "\t".join([str(x) for x in range(1, AALength-1)]) + "\n") - o.write("mutations.at.position\t" + "\t".join([str(x) for x in AA_mutation[1:]]) + "\n") - o.write("AA.at.position\t" + "\t".join([str(x) for x in absentAA]) + "\n") - -if linecount == 0: - print "No data, exiting" - with open(outfile, 'w') as o: - o.write("RGYW (%)," + ("0,0,0\n" * len(genes))) - o.write("WRCY (%)," + ("0,0,0\n" * len(genes))) - o.write("WA (%)," + ("0,0,0\n" * len(genes))) - o.write("TW (%)," + ("0,0,0\n" * len(genes))) - import sys - - sys.exit() - -hotspotMatcher = re.compile("[actg]+,(\d+)-(\d+)\((.*)\)") -RGYWCount = {g: 0 for g in genes} -WRCYCount = {g: 0 for g in genes} -WACount = {g: 0 for g in genes} -TWCount = {g: 0 for g in genes} - -IDIndex = 0 -ataIndex = 0 -tatIndex = 0 -aggctatIndex = 0 -atagcctIndex = 0 -first = True -with open(infile, 'r') as i: - for line in i: - if first: - linesplt = line.split("\t") - ataIndex = linesplt.index("X.a.t.a") - tatIndex = linesplt.index("t.a.t.") - aggctatIndex = linesplt.index("X.a.g.g.c.t..a.t.") - atagcctIndex = linesplt.index("X.a.t..a.g.c.c.t.") - first = False - continue - linesplt = line.split("\t") - gene = linesplt[best_matchIndex] - ID = linesplt[IDIndex] - RGYW = [(int(x), int(y), z) for (x, y, z) in - [hotspotMatcher.match(x).groups() for x in linesplt[aggctatIndex].split("|") if x]] - WRCY = [(int(x), int(y), z) for (x, y, z) in - [hotspotMatcher.match(x).groups() for x in linesplt[atagcctIndex].split("|") if x]] - WA = [(int(x), int(y), z) for (x, y, z) in - [hotspotMatcher.match(x).groups() for x in linesplt[ataIndex].split("|") if x]] - TW = [(int(x), int(y), z) for (x, y, z) in - [hotspotMatcher.match(x).groups() for x in linesplt[tatIndex].split("|") if x]] - RGYWCount[ID], WRCYCount[ID], WACount[ID], TWCount[ID] = 0, 0, 0, 0 - - mutationList = (mutationdic[ID + "_FR1"] if include_fr1 else []) + mutationdic[ID + "_CDR1"] + mutationdic[ - ID + "_FR2"] + mutationdic[ID + "_CDR2"] + mutationdic[ID + "_FR3"] - for mutation in mutationList: - frm, where, to, AAfrm, AAwhere, AAto, junk = mutation - mutation_in_RGYW = any([(start <= int(where) <= end) for (start, end, region) in RGYW]) - mutation_in_WRCY = any([(start <= int(where) <= end) for (start, end, region) in WRCY]) - mutation_in_WA = any([(start <= int(where) <= end) for (start, end, region) in WA]) - mutation_in_TW = any([(start <= int(where) <= end) for (start, end, region) in TW]) - - in_how_many_motifs = sum([mutation_in_RGYW, mutation_in_WRCY, mutation_in_WA, mutation_in_TW]) - - if in_how_many_motifs > 0: - RGYWCount[ID] += (1.0 * int(mutation_in_RGYW)) / in_how_many_motifs - WRCYCount[ID] += (1.0 * int(mutation_in_WRCY)) / in_how_many_motifs - WACount[ID] += (1.0 * int(mutation_in_WA)) / in_how_many_motifs - TWCount[ID] += (1.0 * int(mutation_in_TW)) / in_how_many_motifs - -directory = outfile[:outfile.rfind("/") + 1] -value = 0 -valuedic = dict() -for gene in genes: - with open(directory + gene + "_value.txt", 'r') as v: - valuedic[gene] = int(v.readlines()[0].rstrip()) -with open(directory + "total_value.txt", 'r') as v: - valuedic["total"] = int(v.readlines()[0].rstrip()) - -dic = {"RGYW": RGYWCount, "WRCY": WRCYCount, "WA": WACount, "TW": TWCount} -arr = ["RGYW", "WRCY", "WA", "TW"] -with open(outfile, 'w') as o: - for typ in arr: - o.write(typ + " (%)") - curr = dic[typ] - for gene in genes: - geneMatcher = re.compile(".*" + gene + ".*") - if valuedic[gene] is 0: - o.write(",0,0,0") - else: - x = int(round(sum([curr[x] for x in [y for y, z in genedic.iteritems() if geneMatcher.match(z)]]))) - y = valuedic[gene] - z = str(round(x / float(valuedic[gene]) * 100, 1)) - o.write("," + str(x) + "," + str(y) + "," + z) - # for total - x = int(round(sum([y for x, y in curr.iteritems()]))) - y = valuedic["total"] - z = str(round(x / float(valuedic["total"]) * 100, 1)) - o.write("," + str(x) + "," + str(y) + "," + z + "\n") - - -# for testing -seq_motif_file = outfile[:outfile.rindex("/")] + "/motif_per_seq.txt" -with open(seq_motif_file, 'w') as o: - o.write("ID\tRGYWC\tWRCY\tWA\tTW\n") - for ID in IDlist: - o.write(ID + "\t" + str(round(RGYWCount[ID], 2)) + "\t" + str(round(WRCYCount[ID], 2)) + "\t" + str( - round(WACount[ID], 2)) + "\t" + str(round(TWCount[ID], 2)) + "\n")
--- a/mutation_analysis.r.bak Fri Apr 01 08:54:24 2016 -0400 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,469 +0,0 @@ -library(data.table) -library(ggplot2) - -args <- commandArgs(trailingOnly = TRUE) - -input = args[1] -genes = unlist(strsplit(args[2], ",")) -outputdir = args[3] -print(args[4]) -include_fr1 = ifelse(args[4] == "yes", T, F) -setwd(outputdir) - -dat = read.table(input, header=T, sep="\t", fill=T, stringsAsFactors=F) - -if(length(dat$Sequence.ID) == 0){ - setwd(outputdir) - result = data.frame(x = rep(0, 5), y = rep(0, 5), z = rep(NA, 5)) - row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)") - write.table(x=result, file="mutations.txt", sep=",",quote=F,row.names=T,col.names=F) - transitionTable = data.frame(A=rep(0, 4),C=rep(0, 4),G=rep(0, 4),T=rep(0, 4)) - row.names(transitionTable) = c("A", "C", "G", "T") - transitionTable["A","A"] = NA - transitionTable["C","C"] = NA - transitionTable["G","G"] = NA - transitionTable["T","T"] = NA - write.table(x=transitionTable, file="transitions.txt", sep=",",quote=F,row.names=T,col.names=NA) - cat("0", file="n.txt") - stop("No data") -} - - - -cleanup_columns = c("FR1.IMGT.c.a", - "FR2.IMGT.g.t", - "CDR1.IMGT.Nb.of.nucleotides", - "CDR2.IMGT.t.a", - "FR1.IMGT.c.g", - "CDR1.IMGT.c.t", - "FR2.IMGT.a.c", - "FR2.IMGT.Nb.of.mutations", - "FR2.IMGT.g.c", - "FR2.IMGT.a.g", - "FR3.IMGT.t.a", - "FR3.IMGT.t.c", - "FR2.IMGT.g.a", - "FR3.IMGT.c.g", - "FR1.IMGT.Nb.of.mutations", - "CDR1.IMGT.g.a", - "CDR1.IMGT.t.g", - "CDR1.IMGT.g.c", - "CDR2.IMGT.Nb.of.nucleotides", - "FR2.IMGT.a.t", - "CDR1.IMGT.Nb.of.mutations", - "CDR1.IMGT.a.g", - "FR3.IMGT.a.c", - "FR1.IMGT.g.a", - "FR3.IMGT.a.g", - "FR1.IMGT.a.t", - "CDR2.IMGT.a.g", - "CDR2.IMGT.Nb.of.mutations", - "CDR2.IMGT.g.t", - "CDR2.IMGT.a.c", - "CDR1.IMGT.t.c", - "FR3.IMGT.g.c", - "FR1.IMGT.g.t", - "FR3.IMGT.g.t", - "CDR1.IMGT.a.t", - "FR1.IMGT.a.g", - "FR3.IMGT.a.t", - "FR3.IMGT.Nb.of.nucleotides", - "FR2.IMGT.t.c", - "CDR2.IMGT.g.a", - "FR2.IMGT.t.a", - "CDR1.IMGT.t.a", - "FR2.IMGT.t.g", - "FR3.IMGT.t.g", - "FR2.IMGT.Nb.of.nucleotides", - "FR1.IMGT.t.a", - "FR1.IMGT.t.g", - "FR3.IMGT.c.t", - "FR1.IMGT.t.c", - "CDR2.IMGT.a.t", - "FR2.IMGT.c.t", - "CDR1.IMGT.g.t", - "CDR2.IMGT.t.g", - "FR1.IMGT.Nb.of.nucleotides", - "CDR1.IMGT.c.g", - "CDR2.IMGT.t.c", - "FR3.IMGT.g.a", - "CDR1.IMGT.a.c", - "FR2.IMGT.c.a", - "FR3.IMGT.Nb.of.mutations", - "FR2.IMGT.c.g", - "CDR2.IMGT.g.c", - "FR1.IMGT.g.c", - "CDR2.IMGT.c.t", - "FR3.IMGT.c.a", - "CDR1.IMGT.c.a", - "CDR2.IMGT.c.g", - "CDR2.IMGT.c.a", - "FR1.IMGT.c.t", - "FR1.IMGT.Nb.of.silent.mutations", - "FR2.IMGT.Nb.of.silent.mutations", - "FR3.IMGT.Nb.of.silent.mutations", - "FR1.IMGT.Nb.of.nonsilent.mutations", - "FR2.IMGT.Nb.of.nonsilent.mutations", - "FR3.IMGT.Nb.of.nonsilent.mutations") - -for(col in cleanup_columns){ - dat[,col] = gsub("\\(.*\\)", "", dat[,col]) - #dat[dat[,col] == "",] = "0" - dat[,col] = as.numeric(dat[,col]) - dat[is.na(dat[,col]),] = 0 -} - -regions = c("FR1", "CDR1", "FR2", "CDR2", "FR3") -if(!include_fr1){ - regions = c("CDR1", "FR2", "CDR2", "FR3") -} - -sum_by_row = function(x, columns) { sum(as.numeric(x[columns]), na.rm=T) } - -VRegionMutations_columns = paste(regions, ".IMGT.Nb.of.mutations", sep="") -dat$VRegionMutations = apply(dat, FUN=sum_by_row, 1, columns=VRegionMutations_columns) - -VRegionNucleotides_columns = paste(regions, ".IMGT.Nb.of.nucleotides", sep="") -dat$VRegionNucleotides = apply(dat, FUN=sum_by_row, 1, columns=VRegionNucleotides_columns) - -transitionMutations_columns = paste(rep(regions, each=4), c(".IMGT.a.g", ".IMGT.g.a", ".IMGT.c.t", ".IMGT.t.c"), sep="") -dat$transitionMutations = apply(dat, FUN=sum_by_row, 1, columns=transitionMutations_columns) - -transversionMutations_columns = paste(rep(regions, each=8), c(".IMGT.a.c",".IMGT.c.a",".IMGT.a.t",".IMGT.t.a",".IMGT.g.c",".IMGT.c.g",".IMGT.g.t",".IMGT.t.g"), sep="") -dat$transversionMutations = apply(dat, FUN=sum_by_row, 1, columns=transversionMutations_columns) - - -transitionMutationsAtGC_columns = paste(rep(regions, each=2), c(".IMGT.g.a",".IMGT.c.t"), sep="") -dat$transitionMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtGC_columns) - - -totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.c.g",".IMGT.c.t",".IMGT.c.a",".IMGT.g.c",".IMGT.g.a",".IMGT.g.t"), sep="") -#totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.g.a",".IMGT.c.t",".IMGT.c.a",".IMGT.c.g",".IMGT.g.t"), sep="") -dat$totalMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtGC_columns) - -transitionMutationsAtAT_columns = paste(rep(regions, each=2), c(".IMGT.a.g",".IMGT.t.c"), sep="") -dat$transitionMutationsAtAT = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtAT_columns) - -totalMutationsAtAT_columns = paste(rep(regions, each=6), c(".IMGT.a.g",".IMGT.a.c",".IMGT.a.t",".IMGT.t.g",".IMGT.t.c",".IMGT.t.a"), sep="") -#totalMutationsAtAT_columns = paste(rep(regions, each=5), c(".IMGT.a.g",".IMGT.t.c",".IMGT.a.c",".IMGT.g.c",".IMGT.t.g"), sep="") -dat$totalMutationsAtAT = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtAT_columns) - - -FRRegions = regions[grepl("FR", regions)] -CDRRegions = regions[grepl("CDR", regions)] - -FR_silentMutations_columns = paste(FRRegions, ".IMGT.Nb.of.silent.mutations", sep="") -dat$silentMutationsFR = apply(dat, FUN=sum_by_row, 1, columns=FR_silentMutations_columns) - -CDR_silentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.silent.mutations", sep="") -dat$silentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_silentMutations_columns) - -FR_nonSilentMutations_columns = paste(FRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="") -dat$nonSilentMutationsFR = apply(dat, FUN=sum_by_row, 1, columns=FR_nonSilentMutations_columns) - -CDR_nonSilentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="") -dat$nonSilentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_nonSilentMutations_columns) - -mutation.sum.columns = c("Sequence.ID", "VRegionMutations", "VRegionNucleotides", "transitionMutations", "transversionMutations", "transitionMutationsAtGC", "transitionMutationsAtAT", "silentMutationsFR", "nonSilentMutationsFR", "silentMutationsCDR", "nonSilentMutationsCDR") - -write.table(dat[,mutation.sum.columns], "mutation_by_id.txt", sep="\t",quote=F,row.names=F,col.names=T) - -setwd(outputdir) - -nts = c("a", "c", "g", "t") -zeros=rep(0, 4) -matrx = matrix(data = 0, ncol=((length(genes) + 1) * 3),nrow=9) -for(i in 1:length(genes)){ - gene = genes[i] - tmp = dat[grepl(paste(".*", gene, ".*", sep=""), dat$best_match),] - if(gene == "."){ - tmp = dat - } - j = i - 1 - x = (j * 3) + 1 - y = (j * 3) + 2 - z = (j * 3) + 3 - matrx[1,x] = sum(tmp$VRegionMutations) - matrx[1,y] = sum(tmp$VRegionNucleotides) - matrx[1,z] = round(matrx[1,x] / matrx[1,y] * 100, digits=1) - - matrx[2,x] = sum(tmp$transitionMutations) - matrx[2,y] = sum(tmp$VRegionMutations) - matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1) - - matrx[3,x] = sum(tmp$transversionMutations) - matrx[3,y] = sum(tmp$VRegionMutations) - matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1) - - matrx[4,x] = sum(tmp$transitionMutationsAtGC) - matrx[4,y] = sum(tmp$totalMutationsAtGC) - matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1) - - matrx[5,x] = sum(tmp$totalMutationsAtGC) - matrx[5,y] = sum(tmp$VRegionMutations) - matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1) - - matrx[6,x] = sum(tmp$transitionMutationsAtAT) - matrx[6,y] = sum(tmp$totalMutationsAtAT) - matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1) - - matrx[7,x] = sum(tmp$totalMutationsAtAT) - matrx[7,y] = sum(tmp$VRegionMutations) - matrx[7,z] = round(matrx[7,x] / matrx[7,y] * 100, digits=1) - - matrx[8,x] = sum(tmp$nonSilentMutationsFR) - matrx[8,y] = sum(tmp$silentMutationsFR) - matrx[8,z] = round(matrx[8,x] / matrx[8,y], digits=1) - - matrx[9,x] = sum(tmp$nonSilentMutationsCDR) - matrx[9,y] = sum(tmp$silentMutationsCDR) - matrx[9,z] = round(matrx[9,x] / matrx[9,y], digits=1) - - - transitionTable = data.frame(A=zeros,C=zeros,G=zeros,T=zeros) - row.names(transitionTable) = c("A", "C", "G", "T") - transitionTable["A","A"] = NA - transitionTable["C","C"] = NA - transitionTable["G","G"] = NA - transitionTable["T","T"] = NA - - if(nrow(tmp) > 0){ - for(nt1 in nts){ - for(nt2 in nts){ - if(nt1 == nt2){ - next - } - NT1 = LETTERS[letters == nt1] - NT2 = LETTERS[letters == nt2] - FR1 = paste("FR1.IMGT.", nt1, ".", nt2, sep="") - CDR1 = paste("CDR1.IMGT.", nt1, ".", nt2, sep="") - FR2 = paste("FR2.IMGT.", nt1, ".", nt2, sep="") - CDR2 = paste("CDR2.IMGT.", nt1, ".", nt2, sep="") - FR3 = paste("FR3.IMGT.", nt1, ".", nt2, sep="") - if(include_fr1){ - transitionTable[NT1,NT2] = sum(tmp[,c(FR1, CDR1, FR2, CDR2, FR3)]) - } else { - transitionTable[NT1,NT2] = sum(tmp[,c(CDR1, FR2, CDR2, FR3)]) - } - } - } - } - - - write.table(x=transitionTable, file=paste("transitions_", gene ,".txt", sep=""), sep=",",quote=F,row.names=T,col.names=NA) - write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file=paste("matched_", gene ,".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T) - - cat(matrx[1,x], file=paste(gene, "_value.txt" ,sep="")) - cat(length(tmp$Sequence.ID), file=paste(gene, "_n.txt" ,sep="")) -} - -#again for all of the data -tmp = dat -j = i -x = (j * 3) + 1 -y = (j * 3) + 2 -z = (j * 3) + 3 -matrx[1,x] = sum(tmp$VRegionMutations) -matrx[1,y] = sum(tmp$VRegionNucleotides) -matrx[1,z] = round(matrx[1,x] / matrx[1,y] * 100, digits=1) - -matrx[2,x] = sum(tmp$transitionMutations) -matrx[2,y] = sum(tmp$VRegionMutations) -matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1) - -matrx[3,x] = sum(tmp$transversionMutations) -matrx[3,y] = sum(tmp$VRegionMutations) -matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1) - -matrx[4,x] = sum(tmp$transitionMutationsAtGC) -matrx[4,y] = sum(tmp$totalMutationsAtGC) -matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1) - -matrx[5,x] = sum(tmp$totalMutationsAtGC) -matrx[5,y] = sum(tmp$VRegionMutations) -matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1) - -matrx[6,x] = sum(tmp$transitionMutationsAtAT) -matrx[6,y] = sum(tmp$totalMutationsAtAT) -matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1) - -matrx[7,x] = sum(tmp$totalMutationsAtAT) -matrx[7,y] = sum(tmp$VRegionMutations) -matrx[7,z] = round(matrx[7,x] / matrx[7,y] * 100, digits=1) - -matrx[8,x] = sum(tmp$nonSilentMutationsFR) -matrx[8,y] = sum(tmp$silentMutationsFR) -matrx[8,z] = round(matrx[8,x] / matrx[8,y], digits=1) - -matrx[9,x] = sum(tmp$nonSilentMutationsCDR) -matrx[9,y] = sum(tmp$silentMutationsCDR) -matrx[9,z] = round(matrx[9,x] / matrx[9,y], digits=1) - -transitionTable = data.frame(A=1:4,C=1:4,G=1:4,T=1:4) -row.names(transitionTable) = c("A", "C", "G", "T") -transitionTable["A","A"] = NA -transitionTable["C","C"] = NA -transitionTable["G","G"] = NA -transitionTable["T","T"] = NA - - -for(nt1 in nts){ - for(nt2 in nts){ - if(nt1 == nt2){ - next - } - NT1 = LETTERS[letters == nt1] - NT2 = LETTERS[letters == nt2] - FR1 = paste("FR1.IMGT.", nt1, ".", nt2, sep="") - CDR1 = paste("CDR1.IMGT.", nt1, ".", nt2, sep="") - FR2 = paste("FR2.IMGT.", nt1, ".", nt2, sep="") - CDR2 = paste("CDR2.IMGT.", nt1, ".", nt2, sep="") - FR3 = paste("FR3.IMGT.", nt1, ".", nt2, sep="") - if(include_fr1){ - transitionTable[NT1,NT2] = sum(tmp[,c(FR1, CDR1, FR2, CDR2, FR3)]) - } else { - transitionTable[NT1,NT2] = sum(tmp[,c(CDR1, FR2, CDR2, FR3)]) - } - } -} -write.table(x=transitionTable, file="transitions.txt", sep=",",quote=F,row.names=T,col.names=NA) -write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file="matched_all.txt", sep="\t",quote=F,row.names=F,col.names=T) -cat(matrx[1,x], file="total_value.txt") -cat(length(tmp$Sequence.ID), file="total_n.txt") - - - -result = data.frame(matrx) -row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)") - -write.table(x=result, file="mutations.txt", sep=",",quote=F,row.names=T,col.names=F) - - -if (!("ggplot2" %in% rownames(installed.packages()))) { - install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") -} - - -genesForPlot = gsub("[0-9]", "", dat$best_match) -genesForPlot = data.frame(table(genesForPlot)) -colnames(genesForPlot) = c("Gene","Freq") -genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq) -write.table(genesForPlot, "all.txt", sep="\t",quote=F,row.names=F,col.names=T) - - -pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=label)) -pc = pc + geom_bar(width = 1, stat = "identity") -pc = pc + coord_polar(theta="y") -pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("Classes", "( n =", sum(genesForPlot$Freq), ")")) - -png(filename="all.png") -pc -dev.off() - - -#blegh -genesForPlot = dat[grepl("ca", dat$best_match),]$best_match -if(length(genesForPlot) > 0){ - genesForPlot = data.frame(table(genesForPlot)) - colnames(genesForPlot) = c("Gene","Freq") - genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq) - - pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=label)) - pc = pc + geom_bar(width = 1, stat = "identity") - pc = pc + coord_polar(theta="y") - pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IgA subclasses", "( n =", sum(genesForPlot$Freq), ")")) - write.table(genesForPlot, "ca.txt", sep="\t",quote=F,row.names=F,col.names=T) - - png(filename="ca.png") - print(pc) - dev.off() -} - -genesForPlot = dat[grepl("cg", dat$best_match),]$best_match -if(length(genesForPlot) > 0){ - genesForPlot = data.frame(table(genesForPlot)) - colnames(genesForPlot) = c("Gene","Freq") - genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq) - - pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=label)) - pc = pc + geom_bar(width = 1, stat = "identity") - pc = pc + coord_polar(theta="y") - pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IgG subclasses", "( n =", sum(genesForPlot$Freq), ")")) - write.table(genesForPlot, "cg.txt", sep="\t",quote=F,row.names=F,col.names=T) - - png(filename="cg.png") - print(pc) - dev.off() -} - -dat$percentage_mutations = round(dat$VRegionMutations / dat$VRegionNucleotides * 100, 2) - -p = ggplot(dat, aes(best_match, percentage_mutations)) -p = p + geom_point(aes(colour=best_match), position="jitter") + geom_boxplot(aes(middle=mean(percentage_mutations)), alpha=0.1, outlier.shape = NA) -p = p + xlab("Subclass") + ylab("Frequency") + ggtitle("Frequency scatter plot") - -png(filename="scatter.png") -print(p) -dev.off() - -write.table(dat[,c("Sequence.ID", "best_match", "VRegionMutations", "VRegionNucleotides", "percentage_mutations")], "scatter.txt", sep="\t",quote=F,row.names=F,col.names=T) - -write.table(dat, input, sep="\t",quote=F,row.names=F,col.names=T) - - - - - - -dat$best_match_class = substr(dat$best_match, 0, 2) -freq_labels = c("0", "0-2", "2-5", "5-10", "10-15", "15-20", "20") -dat$frequency_bins = cut(dat$percentage_mutations, breaks=c(-Inf, 0, 2,5,10,15,20, Inf), labels=freq_labels) - -frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match_class", "frequency_bins")]) - -p = ggplot(frequency_bins_data, aes(frequency_bins, frequency_count)) -p = p + geom_bar(aes(fill=best_match_class), stat="identity", position="dodge") -p = p + xlab("Frequency ranges") + ylab("Frequency") + ggtitle("Mutation Frequencies by class") - -png(filename="frequency_ranges.png") -print(p) -dev.off() - -frequency_bins_data_by_class = frequency_bins_data - -write.table(frequency_bins_data_by_class, "frequency_ranges_classes.txt", sep="\t",quote=F,row.names=F,col.names=T) - -frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match", "frequency_bins")]) - -write.table(frequency_bins_data, "frequency_ranges_subclasses.txt", sep="\t",quote=F,row.names=F,col.names=T) - - -#frequency_bins_data_by_class -#frequency_ranges_subclasses.txt - - - - - - - - - - - - - - - - - - - - - - - - - - -