changeset 49:5c6b9e99d576 draft

Uploaded
author davidvanzessen
date Wed, 18 Nov 2015 05:55:04 -0500
parents d09b1bdfd388
children 8ba6afa1247a
files aa_histogram.r merge_and_filter.r mutation_analysis.py mutation_analysis.r wrapper.sh
diffstat 4 files changed, 250 insertions(+), 109 deletions(-) [+]
line wrap: on
line diff
--- a/aa_histogram.r	Thu Nov 12 09:46:37 2015 -0500
+++ b/aa_histogram.r	Wed Nov 18 05:55:04 2015 -0500
@@ -5,20 +5,28 @@
 input = args[1]
 outfile = args[2]
 
-dat = read.table(input, header=F, sep=",")
-dat=as.numeric(dat[1,])
-dat_sum = sum(dat)
+dat = read.table(input, sep="\t", fill=T, header=T, quote="")
+
+
+
+mutations.at.position = as.numeric(dat[1,])
+aa.at.position = as.numeric(dat[2,])
 
-dat_freq = dat / dat_sum * 100
+dat_freq = mutations.at.position / aa.at.position
 dat_dt = data.frame(i=1:length(dat_freq), freq=dat_freq)
 
+options(width=220)
+
+print(dat[,20:40])
+
 m = ggplot(dat_dt, aes(x=i, y=freq)) + theme(axis.text.x = element_text(angle = 90, hjust = 1))
 m = m + geom_histogram(stat="identity", colour = "black", fill = "darkgrey", alpha=0.8) + scale_x_continuous(breaks=1:length(dat_freq), labels=1:length(dat_freq))
-m = m + annotate("segment", x = 0.5, y = -0.3, xend=26.5, yend=-0.3, colour="darkgreen", size=1) + annotate("text", x = 13, y = -0.2, label="FR1")
-m = m + annotate("segment", x = 26.5, y = -0.4, xend=38.5, yend=-0.4, colour="darkblue", size=1) + annotate("text", x = 32.5, y = -0.3, label="CDR1")
-m = m + annotate("segment", x = 38.5, y = -0.3, xend=55.5, yend=-0.3, colour="darkgreen", size=1) + annotate("text", x = 47, y = -0.2, label="FR2")
-m = m + annotate("segment", x = 55.5, y = -0.4, xend=65.5, yend=-0.4, colour="darkblue", size=1) + annotate("text", x = 60.5, y = -0.3, label="CDR2")
-m = m + annotate("segment", x = 65.5, y = -0.3, xend=104.5, yend=-0.3, colour="darkgreen", size=1) + annotate("text", x = 85, y = -0.2, label="FR3")
+m = m + annotate("segment", x = 0.5, y = -0.05, xend=26.5, yend=-0.05, colour="darkgreen", size=1) + annotate("text", x = 13, y = -0.1, label="FR1")
+m = m + annotate("segment", x = 26.5, y = -0.07, xend=38.5, yend=-0.07, colour="darkblue", size=1) + annotate("text", x = 32.5, y = -0.15, label="CDR1")
+m = m + annotate("segment", x = 38.5, y = -0.05, xend=55.5, yend=-0.05, colour="darkgreen", size=1) + annotate("text", x = 47, y = -0.1, label="FR2")
+m = m + annotate("segment", x = 55.5, y = -0.07, xend=65.5, yend=-0.07, colour="darkblue", size=1) + annotate("text", x = 60.5, y = -0.15, label="CDR2")
+m = m + annotate("segment", x = 65.5, y = -0.05, xend=104.5, yend=-0.05, colour="darkgreen", size=1) + annotate("text", x = 85, y = -0.1, label="FR3")
+m = m + expand_limits(y=c(-0.1,1)) + xlab("AA position") + ylab("Frequency") + ggtitle("AA mutation frequency")
 write.table(dat_dt, paste(dirname(outfile), "/aa_histogram.txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
 
 png(filename=outfile, width=1280, height=720)
--- a/mutation_analysis.py	Thu Nov 12 09:46:37 2015 -0500
+++ b/mutation_analysis.py	Wed Nov 18 05:55:04 2015 -0500
@@ -1,9 +1,10 @@
+from collections import defaultdict
 import re
 import argparse
 
 parser = argparse.ArgumentParser()
 parser.add_argument("--input",
-                    help="The '7_V-REGION-mutation-and-AA-change-table' and '10_V-REGION-mutation-hotspots' merged together, with an added 'best_match' annotation")
+					help="The '7_V-REGION-mutation-and-AA-change-table' and '10_V-REGION-mutation-hotspots' merged together, with an added 'best_match' annotation")
 parser.add_argument("--genes", help="The genes available in the 'best_match' column")
 parser.add_argument("--includefr1", help="The genes available in the 'best_match' column")
 parser.add_argument("--output", help="Output file")
@@ -33,6 +34,8 @@
 IDlist = []
 mutationList = []
 mutationListByID = {}
+cdr1LengthDic = {}
+cdr2LengthDic = {}
 
 with open(infile, 'r') as i:
 	for line in i:
@@ -45,6 +48,8 @@
 			fr2Index = linesplt.index("FR2.IMGT")
 			cdr2Index = linesplt.index("CDR2.IMGT")
 			fr3Index = linesplt.index("FR3.IMGT")
+			cdr1LengthIndex = linesplt.index("CDR1.IMGT.Nb.of.nucleotides")
+			cdr2LengthIndex = linesplt.index("CDR2.IMGT.Nb.of.nucleotides")
 			first = False
 			continue
 		linecount += 1
@@ -62,9 +67,17 @@
 		mutationList += mutationdic[ID + "_FR1"] + mutationdic[ID + "_CDR1"] + mutationdic[ID + "_FR2"] + mutationdic[ID + "_CDR2"] + mutationdic[ID + "_FR3"]
 		mutationListByID[ID] = mutationdic[ID + "_FR1"] + mutationdic[ID + "_CDR1"] + mutationdic[ID + "_FR2"] + mutationdic[ID + "_CDR2"] + mutationdic[ID + "_FR3"]
 
+		cdr1Length = linesplt[cdr1LengthIndex]
+		cdr2Length = linesplt[cdr2LengthIndex]
+
+		cdr1LengthDic[ID] = int(cdr1Length) / 3
+		cdr2LengthDic[ID] = int(cdr2Length) / 3
+
 		IDlist += [ID]
 
-AA_mutation = [0] * (int(max(mutationList, key=lambda i: int(i[4]) if i[4] else 0)[4]) + 1)  # [4] is the position of the AA mutation, None if silent
+AALength = (int(max(mutationList, key=lambda i: int(i[4]) if i[4] else 0)[4]) + 1)  # [4] is the position of the AA mutation, None if silent
+
+AA_mutation = [0] * AALength
 AA_mutation_empty = AA_mutation[:]
 
 aa_mutations_by_id_file = outfile[:outfile.rindex("/")] + "/aa_id_mutations.txt"
@@ -75,28 +88,74 @@
 			if mutation[4]:
 				AA_mutation[int(mutation[4])] += 1
 				AA_mutation_for_ID[int(mutation[4])] += 1
-		o.write(ID + "\t" + "\t".join([str(x) for x in AA_mutation_for_ID]) + "\n")
+		o.write(ID + "\t" + "\t".join([str(x) for x in AA_mutation_for_ID[1:]]) + "\n")
 
 
 
-#for mutation in mutationList:
-#    if mutation[4]:  # if non silent mutation
-#        AA_mutation[int(mutation[4])] += 1
+#absent AA stuff
+absentAACDR1Dic = defaultdict(list)
+absentAACDR1Dic[5] = range(29,36)
+absentAACDR1Dic[6] = range(29,35)
+absentAACDR1Dic[7] = range(30,35)
+absentAACDR1Dic[8] = range(30,34)
+absentAACDR1Dic[9] = range(31,34)
+absentAACDR1Dic[10] = range(31,33)
+absentAACDR1Dic[11] = [32]
+
+absentAACDR2Dic = defaultdict(list)
+absentAACDR2Dic[0] = range(55,65)
+absentAACDR2Dic[1] = range(56,65)
+absentAACDR2Dic[2] = range(56,64)
+absentAACDR2Dic[3] = range(57,64)
+absentAACDR2Dic[4] = range(57,63)
+absentAACDR2Dic[5] = range(58,63)
+absentAACDR2Dic[6] = range(58,62)
+absentAACDR2Dic[7] = range(59,62)
+absentAACDR2Dic[8] = range(59,61)
+absentAACDR2Dic[9] = [60]
+
+absentAA = [len(IDlist)] * (AALength-1)
+for k, cdr1Length in cdr1LengthDic.iteritems():
+	for c in absentAACDR1Dic[cdr1Length]:
+		absentAA[c] -= 1
+
+for k, cdr2Length in cdr2LengthDic.iteritems():
+	for c in absentAACDR2Dic[cdr2Length]:
+		absentAA[c] -= 1
+
+
+aa_mutations_by_id_file = outfile[:outfile.rindex("/")] + "/absent_aa_id.txt"
+with open(aa_mutations_by_id_file, 'w') as o:
+	o.write("ID\tcdr1length\tcdr2length\t" + "\t".join([str(x) for x in range(1,AALength-1)]) + "\n")
+	for ID in IDlist:
+		absentAAbyID = [1] * (AALength-1)
+		cdr1Length = cdr1LengthDic[ID]
+		for c in absentAACDR1Dic[cdr1Length]:
+			absentAAbyID[c] -= 1
+
+		cdr2Length = cdr2LengthDic[ID]
+		for c in absentAACDR2Dic[cdr2Length]:
+			absentAAbyID[c] -= 1
+		o.write(ID + "\t" + str(cdr1Length) + "\t" + str(cdr2Length) + "\t" + "\t".join([str(x) for x in absentAAbyID]) + "\n")
+
+
 
 aa_mutations_file = outfile[:outfile.rindex("/")] + "/aa_mutations.txt"
 with open(aa_mutations_file, 'w') as o:
-    o.write(",".join([str(x) for x in AA_mutation]) + "\n")
+	o.write("row.name\t" + "\t".join([str(x) for x in range(1, AALength-1)]) + "\n")
+	o.write("mutations.at.position\t" + "\t".join([str(x) for x in AA_mutation[1:]]) + "\n")
+	o.write("AA.at.position\t" + "\t".join([str(x) for x in absentAA]) + "\n")
 
 if linecount == 0:
-    print "No data, exiting"
-    with open(outfile, 'w') as o:
-        o.write("RGYW (%)," + ("0,0,0\n" * len(genes)))
-        o.write("WRCY (%)," + ("0,0,0\n" * len(genes)))
-        o.write("WA (%)," + ("0,0,0\n" * len(genes)))
-        o.write("TW (%)," + ("0,0,0\n" * len(genes)))
-    import sys
+	print "No data, exiting"
+	with open(outfile, 'w') as o:
+		o.write("RGYW (%)," + ("0,0,0\n" * len(genes)))
+		o.write("WRCY (%)," + ("0,0,0\n" * len(genes)))
+		o.write("WA (%)," + ("0,0,0\n" * len(genes)))
+		o.write("TW (%)," + ("0,0,0\n" * len(genes)))
+	import sys
 
-    sys.exit()
+	sys.exit()
 
 hotspotMatcher = re.compile("[actg]+,(\d+)-(\d+)\((.*)\)")
 RGYWCount = {g: 0 for g in genes}
@@ -111,80 +170,80 @@
 atagcctIndex = 0
 first = True
 with open(infile, 'r') as i:
-    for line in i:
-        if first:
-            linesplt = line.split("\t")
-            ataIndex = linesplt.index("X.a.t.a")
-            tatIndex = linesplt.index("t.a.t.")
-            aggctatIndex = linesplt.index("X.a.g.g.c.t..a.t.")
-            atagcctIndex = linesplt.index("X.a.t..a.g.c.c.t.")
-            first = False
-            continue
-        linesplt = line.split("\t")
-        gene = linesplt[best_matchIndex]
-        ID = linesplt[IDIndex]
-        RGYW = [(int(x), int(y), z) for (x, y, z) in
-                [hotspotMatcher.match(x).groups() for x in linesplt[aggctatIndex].split("|") if x]]
-        WRCY = [(int(x), int(y), z) for (x, y, z) in
-                [hotspotMatcher.match(x).groups() for x in linesplt[atagcctIndex].split("|") if x]]
-        WA = [(int(x), int(y), z) for (x, y, z) in
-              [hotspotMatcher.match(x).groups() for x in linesplt[ataIndex].split("|") if x]]
-        TW = [(int(x), int(y), z) for (x, y, z) in
-              [hotspotMatcher.match(x).groups() for x in linesplt[tatIndex].split("|") if x]]
-        RGYWCount[ID], WRCYCount[ID], WACount[ID], TWCount[ID] = 0, 0, 0, 0
+	for line in i:
+		if first:
+			linesplt = line.split("\t")
+			ataIndex = linesplt.index("X.a.t.a")
+			tatIndex = linesplt.index("t.a.t.")
+			aggctatIndex = linesplt.index("X.a.g.g.c.t..a.t.")
+			atagcctIndex = linesplt.index("X.a.t..a.g.c.c.t.")
+			first = False
+			continue
+		linesplt = line.split("\t")
+		gene = linesplt[best_matchIndex]
+		ID = linesplt[IDIndex]
+		RGYW = [(int(x), int(y), z) for (x, y, z) in
+				[hotspotMatcher.match(x).groups() for x in linesplt[aggctatIndex].split("|") if x]]
+		WRCY = [(int(x), int(y), z) for (x, y, z) in
+				[hotspotMatcher.match(x).groups() for x in linesplt[atagcctIndex].split("|") if x]]
+		WA = [(int(x), int(y), z) for (x, y, z) in
+			  [hotspotMatcher.match(x).groups() for x in linesplt[ataIndex].split("|") if x]]
+		TW = [(int(x), int(y), z) for (x, y, z) in
+			  [hotspotMatcher.match(x).groups() for x in linesplt[tatIndex].split("|") if x]]
+		RGYWCount[ID], WRCYCount[ID], WACount[ID], TWCount[ID] = 0, 0, 0, 0
 
-        mutationList = (mutationdic[ID + "_FR1"] if include_fr1 else []) + mutationdic[ID + "_CDR1"] + mutationdic[
-            ID + "_FR2"] + mutationdic[ID + "_CDR2"] + mutationdic[ID + "_FR3"]
-        for mutation in mutationList:
-            frm, where, to, AAfrm, AAwhere, AAto, junk = mutation
-            mutation_in_RGYW = any([(start <= int(where) <= end) for (start, end, region) in RGYW])
-            mutation_in_WRCY = any([(start <= int(where) <= end) for (start, end, region) in WRCY])
-            mutation_in_WA = any([(start <= int(where) <= end) for (start, end, region) in WA])
-            mutation_in_TW = any([(start <= int(where) <= end) for (start, end, region) in TW])
+		mutationList = (mutationdic[ID + "_FR1"] if include_fr1 else []) + mutationdic[ID + "_CDR1"] + mutationdic[
+			ID + "_FR2"] + mutationdic[ID + "_CDR2"] + mutationdic[ID + "_FR3"]
+		for mutation in mutationList:
+			frm, where, to, AAfrm, AAwhere, AAto, junk = mutation
+			mutation_in_RGYW = any([(start <= int(where) <= end) for (start, end, region) in RGYW])
+			mutation_in_WRCY = any([(start <= int(where) <= end) for (start, end, region) in WRCY])
+			mutation_in_WA = any([(start <= int(where) <= end) for (start, end, region) in WA])
+			mutation_in_TW = any([(start <= int(where) <= end) for (start, end, region) in TW])
 
-            in_how_many_motifs = sum([mutation_in_RGYW, mutation_in_WRCY, mutation_in_WA, mutation_in_TW])
+			in_how_many_motifs = sum([mutation_in_RGYW, mutation_in_WRCY, mutation_in_WA, mutation_in_TW])
 
-            if in_how_many_motifs > 0:
-                RGYWCount[ID] += (1.0 * int(mutation_in_RGYW)) / in_how_many_motifs
-                WRCYCount[ID] += (1.0 * int(mutation_in_WRCY)) / in_how_many_motifs
-                WACount[ID] += (1.0 * int(mutation_in_WA)) / in_how_many_motifs
-                TWCount[ID] += (1.0 * int(mutation_in_TW)) / in_how_many_motifs
+			if in_how_many_motifs > 0:
+				RGYWCount[ID] += (1.0 * int(mutation_in_RGYW)) / in_how_many_motifs
+				WRCYCount[ID] += (1.0 * int(mutation_in_WRCY)) / in_how_many_motifs
+				WACount[ID] += (1.0 * int(mutation_in_WA)) / in_how_many_motifs
+				TWCount[ID] += (1.0 * int(mutation_in_TW)) / in_how_many_motifs
 
 directory = outfile[:outfile.rfind("/") + 1]
 value = 0
 valuedic = dict()
 for gene in genes:
-    with open(directory + gene + "_value.txt", 'r') as v:
-        valuedic[gene] = int(v.readlines()[0].rstrip())
+	with open(directory + gene + "_value.txt", 'r') as v:
+		valuedic[gene] = int(v.readlines()[0].rstrip())
 with open(directory + "total_value.txt", 'r') as v:
-    valuedic["total"] = int(v.readlines()[0].rstrip())
+	valuedic["total"] = int(v.readlines()[0].rstrip())
 
 dic = {"RGYW": RGYWCount, "WRCY": WRCYCount, "WA": WACount, "TW": TWCount}
 arr = ["RGYW", "WRCY", "WA", "TW"]
 with open(outfile, 'w') as o:
-    for typ in arr:
-        o.write(typ + " (%)")
-        curr = dic[typ]
-        for gene in genes:
-            geneMatcher = re.compile(".*" + gene + ".*")
-            if valuedic[gene] is 0:
-                o.write(",0,0,0")
-            else:
-                x = int(round(sum([curr[x] for x in [y for y, z in genedic.iteritems() if geneMatcher.match(z)]])))
-                y = valuedic[gene]
-                z = str(round(x / float(valuedic[gene]) * 100, 1))
-                o.write("," + str(x) + "," + str(y) + "," + z)
-        # for total
-        x = int(round(sum([y for x, y in curr.iteritems()])))
-        y = valuedic["total"]
-        z = str(round(x / float(valuedic["total"]) * 100, 1))
-        o.write("," + str(x) + "," + str(y) + "," + z + "\n")
+	for typ in arr:
+		o.write(typ + " (%)")
+		curr = dic[typ]
+		for gene in genes:
+			geneMatcher = re.compile(".*" + gene + ".*")
+			if valuedic[gene] is 0:
+				o.write(",0,0,0")
+			else:
+				x = int(round(sum([curr[x] for x in [y for y, z in genedic.iteritems() if geneMatcher.match(z)]])))
+				y = valuedic[gene]
+				z = str(round(x / float(valuedic[gene]) * 100, 1))
+				o.write("," + str(x) + "," + str(y) + "," + z)
+		# for total
+		x = int(round(sum([y for x, y in curr.iteritems()])))
+		y = valuedic["total"]
+		z = str(round(x / float(valuedic["total"]) * 100, 1))
+		o.write("," + str(x) + "," + str(y) + "," + z + "\n")
 
 
 # for testing
 seq_motif_file = outfile[:outfile.rindex("/")] + "/motif_per_seq.txt"
 with open(seq_motif_file, 'w') as o:
-    o.write("ID\tRGYWC\tWRCY\tWA\tTW\n")
-    for ID in IDlist:
-        o.write(ID + "\t" + str(round(RGYWCount[ID], 2)) + "\t" + str(round(WRCYCount[ID], 2)) + "\t" + str(
-            round(WACount[ID], 2)) + "\t" + str(round(TWCount[ID], 2)) + "\n")
+	o.write("ID\tRGYWC\tWRCY\tWA\tTW\n")
+	for ID in IDlist:
+		o.write(ID + "\t" + str(round(RGYWCount[ID], 2)) + "\t" + str(round(WRCYCount[ID], 2)) + "\t" + str(
+			round(WACount[ID], 2)) + "\t" + str(round(TWCount[ID], 2)) + "\n")
--- a/mutation_analysis.r	Thu Nov 12 09:46:37 2015 -0500
+++ b/mutation_analysis.r	Wed Nov 18 05:55:04 2015 -0500
@@ -1,3 +1,6 @@
+library(data.table)
+library(ggplot2)
+
 args <- commandArgs(trailingOnly = TRUE)
 
 input = args[1]
@@ -133,9 +136,19 @@
 transitionMutationsAtGC_columns = paste(rep(regions, each=2), c(".IMGT.g.a",".IMGT.c.t"), sep="")
 dat$transitionMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtGC_columns)
 
-totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.g.a",".IMGT.c.t",".IMGT.c.a",".IMGT.g.c",".IMGT.c.g",".IMGT.g.t"), sep="")
+
+totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.c.g",".IMGT.c.t",".IMGT.c.a",".IMGT.g.c",".IMGT.g.a",".IMGT.g.t"), sep="")
+#totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.g.a",".IMGT.c.t",".IMGT.c.a",".IMGT.c.g",".IMGT.g.t"), sep="")
 dat$totalMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtGC_columns)
 
+transitionMutationsAtAT_columns = paste(rep(regions, each=2), c(".IMGT.a.g",".IMGT.t.c"), sep="")
+dat$transitionMutationsAtAT = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtAT_columns)
+
+totalMutationsAtAT_columns = paste(rep(regions, each=6), c(".IMGT.a.g",".IMGT.a.c",".IMGT.a.t",".IMGT.t.g",".IMGT.t.c",".IMGT.t.a"), sep="")
+#totalMutationsAtAT_columns = paste(rep(regions, each=5), c(".IMGT.a.g",".IMGT.t.c",".IMGT.a.c",".IMGT.g.c",".IMGT.t.g"), sep="")
+dat$totalMutationsAtAT = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtAT_columns)
+
+
 FRRegions = regions[grepl("FR", regions)]
 CDRRegions = regions[grepl("CDR", regions)]
 
@@ -151,7 +164,7 @@
 CDR_nonSilentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="")
 dat$nonSilentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_nonSilentMutations_columns)
 
-mutation.sum.columns = c("Sequence.ID", "VRegionMutations", "VRegionNucleotides", "transitionMutations", "transversionMutations", "transitionMutationsAtGC", "silentMutationsFR", "nonSilentMutationsFR", "silentMutationsCDR", "nonSilentMutationsCDR")
+mutation.sum.columns = c("Sequence.ID", "VRegionMutations", "VRegionNucleotides", "transitionMutations", "transversionMutations", "transitionMutationsAtGC", "transitionMutationsAtAT", "silentMutationsFR", "nonSilentMutationsFR", "silentMutationsCDR", "nonSilentMutationsCDR")
 
 write.table(dat[,mutation.sum.columns], "mutation_by_id.txt", sep="\t",quote=F,row.names=F,col.names=T)
 
@@ -159,7 +172,7 @@
 
 nts = c("a", "c", "g", "t")
 zeros=rep(0, 4)
-matrx = matrix(data = 0, ncol=((length(genes) + 1) * 3),nrow=7)
+matrx = matrix(data = 0, ncol=((length(genes) + 1) * 3),nrow=9)
 for(i in 1:length(genes)){
   gene = genes[i]
   tmp = dat[grepl(paste(".*", gene, ".*", sep=""), dat$best_match),]
@@ -173,24 +186,38 @@
   matrx[1,x] = sum(tmp$VRegionMutations)
   matrx[1,y] = sum(tmp$VRegionNucleotides)
   matrx[1,z] = round(matrx[1,x] / matrx[1,y] * 100, digits=1)
+
   matrx[2,x] = sum(tmp$transitionMutations)
   matrx[2,y] = sum(tmp$VRegionMutations)
   matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1)
+
   matrx[3,x] = sum(tmp$transversionMutations)
   matrx[3,y] = sum(tmp$VRegionMutations)
   matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1)
+
   matrx[4,x] = sum(tmp$transitionMutationsAtGC)
   matrx[4,y] = sum(tmp$totalMutationsAtGC)
   matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1)
+
   matrx[5,x] = sum(tmp$totalMutationsAtGC)
   matrx[5,y] = sum(tmp$VRegionMutations)
   matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1)
-  matrx[6,x] = sum(tmp$nonSilentMutationsFR)
-  matrx[6,y] = sum(tmp$silentMutationsFR)
-  matrx[6,z] = round(matrx[6,x] / matrx[6,y], digits=1)
-  matrx[7,x] = sum(tmp$nonSilentMutationsCDR)
-  matrx[7,y] = sum(tmp$silentMutationsCDR)
-  matrx[7,z] = round(matrx[7,x] / matrx[7,y], digits=1)
+
+  matrx[6,x] = sum(tmp$transitionMutationsAtAT)
+  matrx[6,y] = sum(tmp$totalMutationsAtAT)
+  matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1)
+
+  matrx[7,x] = sum(tmp$totalMutationsAtAT)
+  matrx[7,y] = sum(tmp$VRegionMutations)
+  matrx[7,z] = round(matrx[7,x] / matrx[7,y] * 100, digits=1)
+
+  matrx[8,x] = sum(tmp$nonSilentMutationsFR)
+  matrx[8,y] = sum(tmp$silentMutationsFR)
+  matrx[8,z] = round(matrx[8,x] / matrx[8,y], digits=1)
+
+  matrx[9,x] = sum(tmp$nonSilentMutationsCDR)
+  matrx[9,y] = sum(tmp$silentMutationsCDR)
+  matrx[9,z] = round(matrx[9,x] / matrx[9,y], digits=1)
   
   
   transitionTable = data.frame(A=zeros,C=zeros,G=zeros,T=zeros)
@@ -239,24 +266,38 @@
 matrx[1,x] = sum(tmp$VRegionMutations)
 matrx[1,y] = sum(tmp$VRegionNucleotides)
 matrx[1,z] = round(matrx[1,x] / matrx[1,y] * 100, digits=1)
+
 matrx[2,x] = sum(tmp$transitionMutations)
 matrx[2,y] = sum(tmp$VRegionMutations)
 matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1)
+
 matrx[3,x] = sum(tmp$transversionMutations)
 matrx[3,y] = sum(tmp$VRegionMutations)
 matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1)
+
 matrx[4,x] = sum(tmp$transitionMutationsAtGC)
 matrx[4,y] = sum(tmp$totalMutationsAtGC)
 matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1)
+
 matrx[5,x] = sum(tmp$totalMutationsAtGC)
 matrx[5,y] = sum(tmp$VRegionMutations)
 matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1)
-matrx[6,x] = sum(tmp$nonSilentMutationsFR)
-matrx[6,y] = sum(tmp$silentMutationsFR)
-matrx[6,z] = round(matrx[6,x] / matrx[6,y], digits=1)
-matrx[7,x] = sum(tmp$nonSilentMutationsCDR)
-matrx[7,y] = sum(tmp$silentMutationsCDR)
-matrx[7,z] = round(matrx[7,x] / matrx[7,y], digits=1)
+
+matrx[6,x] = sum(tmp$transitionMutationsAtAT)
+matrx[6,y] = sum(tmp$totalMutationsAtAT)
+matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1)
+
+matrx[7,x] = sum(tmp$totalMutationsAtAT)
+matrx[7,y] = sum(tmp$VRegionMutations)
+matrx[7,z] = round(matrx[7,x] / matrx[7,y] * 100, digits=1)
+
+matrx[8,x] = sum(tmp$nonSilentMutationsFR)
+matrx[8,y] = sum(tmp$silentMutationsFR)
+matrx[8,z] = round(matrx[8,x] / matrx[8,y], digits=1)
+
+matrx[9,x] = sum(tmp$nonSilentMutationsCDR)
+matrx[9,y] = sum(tmp$silentMutationsCDR)
+matrx[9,z] = round(matrx[9,x] / matrx[9,y], digits=1)
 
 transitionTable = data.frame(A=1:4,C=1:4,G=1:4,T=1:4)
 row.names(transitionTable) = c("A", "C", "G", "T")
@@ -293,7 +334,7 @@
 
 
 result = data.frame(matrx)
-row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C.G (%)", "FR R/S (ratio)", "CDR R/S (ratio)")
+row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)")
 
 write.table(x=result, file="mutations.txt", sep=",",quote=F,row.names=T,col.names=F)
 
@@ -301,7 +342,7 @@
 if (!("ggplot2" %in% rownames(installed.packages()))) {
 	install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") 
 }
-library(ggplot2)
+
 
 genesForPlot = gsub("[0-9]", "", dat$best_match)
 genesForPlot = data.frame(table(genesForPlot))
@@ -360,13 +401,46 @@
 p = ggplot(dat, aes(best_match, percentage_mutations))
 p = p + geom_point(aes(colour=best_match), position="jitter") + geom_boxplot(aes(middle=mean(percentage_mutations)), alpha=0.1, outlier.shape = NA)
 p = p + xlab("Subclass") + ylab("Frequency") + ggtitle("Frequency scatter plot")
-write.table(dat[,c("Sequence.ID", "best_match", "VRegionMutations", "VRegionNucleotides", "percentage_mutations")], "scatter.txt", sep="\t",quote=F,row.names=F,col.names=T)
-
 
 png(filename="scatter.png")
 print(p)
 dev.off()
 
+write.table(dat[,c("Sequence.ID", "best_match", "VRegionMutations", "VRegionNucleotides", "percentage_mutations")], "scatter.txt", sep="\t",quote=F,row.names=F,col.names=T)
+
+write.table(dat, input, sep="\t",quote=F,row.names=F,col.names=T)
+
+
+
+
+
+
+dat$best_match_class = substr(dat$best_match, 0, 2)
+freq_labels = c("0", "0-2", "2-5", "5-10", "10-15", "15-20", "20")
+dat$frequency_bins = cut(dat$percentage_mutations, breaks=c(-Inf, 0, 2,5,10,15,20, Inf), labels=freq_labels)
+
+frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match_class", "frequency_bins")])
+
+p = ggplot(frequency_bins_data, aes(frequency_bins, frequency_count))
+p = p + geom_bar(aes(fill=best_match_class), stat="identity", position="dodge")
+p = p + xlab("Frequency ranges") + ylab("Frequency") + ggtitle("Mutation Frequencies by class")
+
+png(filename="frequency_ranges.png")
+print(p)
+dev.off()
+
+frequency_bins_data_by_class = frequency_bins_data
+
+write.table(frequency_bins_data_by_class, "frequency_ranges_classes.txt", sep="\t",quote=F,row.names=F,col.names=T)
+
+frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match", "frequency_bins")])
+
+write.table(frequency_bins_data, "frequency_ranges_subclasses.txt", sep="\t",quote=F,row.names=F,col.names=T)
+
+
+#frequency_bins_data_by_class
+#frequency_ranges_subclasses.txt
+
 
 
 
@@ -393,8 +467,3 @@
 
 
 
-
-
-
-
-
--- a/wrapper.sh	Thu Nov 12 09:46:37 2015 -0500
+++ b/wrapper.sh	Wed Nov 18 05:55:04 2015 -0500
@@ -66,7 +66,6 @@
 python $dir/mutation_analysis.py --input $outdir/merged.txt --genes $genes --includefr1 "${include_fr1}" --output $outdir/hotspot_analysis.txt
 echo "R AA histogram"
 Rscript $dir/aa_histogram.r $outdir/aa_mutations.txt $outdir/aa_histogram.png 2>&1
-
 cat $outdir/mutations.txt $outdir/hotspot_analysis.txt > $outdir/result.txt
 
 genes=(ca ca1 ca2 cg cg1 cg2 cg3 cg4 cm)
@@ -91,7 +90,7 @@
 	fi
 done < $outdir/result.txt
 echo "</table>" >> $output
-echo "<a href='unmatched.txt'>unmatched</a><br /><a href='motif_per_seq.txt'>motif per sequence</a><br /><a href='merged.txt'>all data</a><br /><a href='mutation_by_id.txt'>mutations by id</a><br /><a href='aa_id_mutations.txt'>AA mutations location by id</a><br />" >> $output
+echo "<a href='unmatched.txt'>unmatched</a><br /><a href='motif_per_seq.txt'>motif per sequence</a><br /><a href='merged.txt'>all data</a><br /><a href='mutation_by_id.txt'>mutations by id</a><br /><a href='aa_id_mutations.txt'>AA mutations location by id</a><br /><a href='absent_aa_id.txt'>Absant AA locations by id</a><br />" >> $output
 
 
 echo "<img src='all.png'/><br />" >> $output
@@ -111,6 +110,12 @@
 	echo "<img src='scatter.png'/><br />" >> $output
 	echo "<a href='scatter.txt'>download data</a><br />" >> $output
 fi
+if [ -a $outdir/frequency_ranges.png ]
+then
+	echo "<img src='frequency_ranges.png'/><br />" >> $output
+	echo "<a href='frequency_ranges_classes.txt'>download class data</a><br />" >> $output
+	echo "<a href='frequency_ranges_subclasses.txt'>download subclass data</a><br />" >> $output
+fi
 if [ -a $outdir/aa_histogram.png ]
 then
 	echo "<img src='aa_histogram.png'/><br />" >> $output