# HG changeset patch
# User davidvanzessen
# Date 1456760979 18000
# Node ID 7290a88ea202b13eb87e7865671de8f6fa3cec54
# Parent d3542f87a30444a86a0afe036009627d9999d0b8
Uploaded
diff -r d3542f87a304 -r 7290a88ea202 mutation_analysis.py
--- a/mutation_analysis.py Fri Jan 29 08:11:31 2016 -0500
+++ b/mutation_analysis.py Mon Feb 29 10:49:39 2016 -0500
@@ -1,3 +1,4 @@
+from __future__ import division
from collections import defaultdict
import re
import argparse
@@ -56,8 +57,7 @@
linesplt = line.split("\t")
ID = linesplt[IDIndex]
genedic[ID] = linesplt[best_matchIndex]
- mutationdic[ID + "_FR1"] = [mutationMatcher.match(x).groups() for x in linesplt[fr1Index].split("|") if
- x] if include_fr1 else []
+ mutationdic[ID + "_FR1"] = [mutationMatcher.match(x).groups() for x in linesplt[fr1Index].split("|") if x] if include_fr1 else []
mutationdic[ID + "_CDR1"] = [mutationMatcher.match(x).groups() for x in linesplt[cdr1Index].split("|") if x]
mutationdic[ID + "_FR2"] = [mutationMatcher.match(x).groups() for x in linesplt[fr2Index].split("|") if x]
mutationdic[ID + "_CDR2"] = [mutationMatcher.match(x).groups() for x in linesplt[cdr2Index].split("|") if x]
@@ -209,35 +209,68 @@
WACount[ID] += (1.0 * int(mutation_in_WA)) / in_how_many_motifs
TWCount[ID] += (1.0 * int(mutation_in_TW)) / in_how_many_motifs
+
+def mean(lst):
+ return (float(sum(lst)) / len(lst)) if len(lst) > 0 else 0.0
+
+
+def median(lst):
+ lst = sorted(lst)
+ l = len(lst)
+ if l == 0:
+ return 0
+ if l == 1:
+ return lst[0]
+
+ l = int(l / 2)
+
+ if len(lst) % 2 == 0:
+ print "list length is", l
+ return float(lst[l] + lst[(l - 1)]) / 2.0
+ else:
+ return lst[l]
+
+funcs = {"mean": mean, "median": median, "sum": sum}
+
directory = outfile[:outfile.rfind("/") + 1]
value = 0
valuedic = dict()
-for gene in genes:
- with open(directory + gene + "_value.txt", 'r') as v:
- valuedic[gene] = int(v.readlines()[0].rstrip())
-with open(directory + "total_value.txt", 'r') as v:
- valuedic["total"] = int(v.readlines()[0].rstrip())
+
+for fname in funcs.keys():
+ for gene in genes:
+ with open(directory + gene + "_" + fname + "_value.txt", 'r') as v:
+ valuedic[gene + "_" + fname] = float(v.readlines()[0].rstrip())
+ with open(directory + "all_" + fname + "_value.txt", 'r') as v:
+ valuedic["total_" + fname] = float(v.readlines()[0].rstrip())
+
+print valuedic
+
+def get_xyz(lst, gene, f, fname):
+ x = int(round(f(lst)))
+ y = valuedic[gene + "_" + fname]
+ z = str(round(x / float(valuedic[gene + "_" + fname]) * 100, 1)) if valuedic[gene + "_" + fname] != 0 else "0"
+ return (str(x), str(y), z)
dic = {"RGYW": RGYWCount, "WRCY": WRCYCount, "WA": WACount, "TW": TWCount}
arr = ["RGYW", "WRCY", "WA", "TW"]
-with open(outfile, 'w') as o:
- for typ in arr:
- o.write(typ + " (%)")
- curr = dic[typ]
- for gene in genes:
- geneMatcher = re.compile(".*" + gene + ".*")
- if valuedic[gene] is 0:
- o.write(",0,0,0")
- else:
- x = int(round(sum([curr[x] for x in [y for y, z in genedic.iteritems() if geneMatcher.match(z)]])))
- y = valuedic[gene]
- z = str(round(x / float(valuedic[gene]) * 100, 1))
- o.write("," + str(x) + "," + str(y) + "," + z)
- # for total
- x = int(round(sum([y for x, y in curr.iteritems()])))
- y = valuedic["total"]
- z = str(round(x / float(valuedic["total"]) * 100, 1))
- o.write("," + str(x) + "," + str(y) + "," + z + "\n")
+
+for fname in funcs.keys():
+ func = funcs[fname]
+ foutfile = outfile[:outfile.rindex("/")] + "/hotspot_analysis_" + fname + ".txt"
+ with open(foutfile, 'w') as o:
+ for typ in arr:
+ o.write(typ + " (%)")
+ curr = dic[typ]
+ for gene in genes:
+ geneMatcher = re.compile(".*" + gene + ".*")
+ if valuedic[gene + "_" + fname] is 0:
+ o.write(",0,0,0")
+ else:
+ x, y, z = get_xyz([curr[x] for x in [y for y, z in genedic.iteritems() if geneMatcher.match(z)]], gene, func, fname)
+ o.write("," + x + "," + y + "," + z)
+ # for total
+ x, y, z = get_xyz([y for x, y in curr.iteritems()], "total", func, fname)
+ o.write("," + x + "," + y + "," + z + "\n")
# for testing
@@ -245,5 +278,4 @@
with open(seq_motif_file, 'w') as o:
o.write("ID\tRGYWC\tWRCY\tWA\tTW\n")
for ID in IDlist:
- o.write(ID + "\t" + str(round(RGYWCount[ID], 2)) + "\t" + str(round(WRCYCount[ID], 2)) + "\t" + str(
- round(WACount[ID], 2)) + "\t" + str(round(TWCount[ID], 2)) + "\n")
+ o.write(ID + "\t" + str(round(RGYWCount[ID], 2)) + "\t" + str(round(WRCYCount[ID], 2)) + "\t" + str(round(WACount[ID], 2)) + "\t" + str(round(TWCount[ID], 2)) + "\n")
diff -r d3542f87a304 -r 7290a88ea202 mutation_analysis.py.bak
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/mutation_analysis.py.bak Mon Feb 29 10:49:39 2016 -0500
@@ -0,0 +1,248 @@
+from collections import defaultdict
+import re
+import argparse
+
+parser = argparse.ArgumentParser()
+parser.add_argument("--input",
+ help="The '7_V-REGION-mutation-and-AA-change-table' and '10_V-REGION-mutation-hotspots' merged together, with an added 'best_match' annotation")
+parser.add_argument("--genes", help="The genes available in the 'best_match' column")
+parser.add_argument("--includefr1", help="The genes available in the 'best_match' column")
+parser.add_argument("--output", help="Output file")
+
+args = parser.parse_args()
+
+infile = args.input
+genes = str(args.genes).split(",")
+print "includefr1 =", args.includefr1
+include_fr1 = True if args.includefr1 == "yes" else False
+outfile = args.output
+
+genedic = dict()
+
+mutationdic = dict()
+mutationMatcher = re.compile("^(.)(\d+).(.),?(.)?(\d+)?.?(.)?(.?.?.?.?.?)?")
+linecount = 0
+
+IDIndex = 0
+best_matchIndex = 0
+fr1Index = 0
+cdr1Index = 0
+fr2Index = 0
+cdr2Index = 0
+fr3Index = 0
+first = True
+IDlist = []
+mutationList = []
+mutationListByID = {}
+cdr1LengthDic = {}
+cdr2LengthDic = {}
+
+with open(infile, 'r') as i:
+ for line in i:
+ if first:
+ linesplt = line.split("\t")
+ IDIndex = linesplt.index("Sequence.ID")
+ best_matchIndex = linesplt.index("best_match")
+ fr1Index = linesplt.index("FR1.IMGT")
+ cdr1Index = linesplt.index("CDR1.IMGT")
+ fr2Index = linesplt.index("FR2.IMGT")
+ cdr2Index = linesplt.index("CDR2.IMGT")
+ fr3Index = linesplt.index("FR3.IMGT")
+ cdr1LengthIndex = linesplt.index("CDR1.IMGT.Nb.of.nucleotides")
+ cdr2LengthIndex = linesplt.index("CDR2.IMGT.Nb.of.nucleotides")
+ first = False
+ continue
+ linecount += 1
+ linesplt = line.split("\t")
+ ID = linesplt[IDIndex]
+ genedic[ID] = linesplt[best_matchIndex]
+ mutationdic[ID + "_FR1"] = [mutationMatcher.match(x).groups() for x in linesplt[fr1Index].split("|") if x] if include_fr1 else []
+ mutationdic[ID + "_CDR1"] = [mutationMatcher.match(x).groups() for x in linesplt[cdr1Index].split("|") if x]
+ mutationdic[ID + "_FR2"] = [mutationMatcher.match(x).groups() for x in linesplt[fr2Index].split("|") if x]
+ mutationdic[ID + "_CDR2"] = [mutationMatcher.match(x).groups() for x in linesplt[cdr2Index].split("|") if x]
+ mutationdic[ID + "_FR2-CDR2"] = mutationdic[ID + "_FR2"] + mutationdic[ID + "_CDR2"]
+ mutationdic[ID + "_FR3"] = [mutationMatcher.match(x).groups() for x in linesplt[fr3Index].split("|") if x]
+
+ mutationList += mutationdic[ID + "_FR1"] + mutationdic[ID + "_CDR1"] + mutationdic[ID + "_FR2"] + mutationdic[ID + "_CDR2"] + mutationdic[ID + "_FR3"]
+ mutationListByID[ID] = mutationdic[ID + "_FR1"] + mutationdic[ID + "_CDR1"] + mutationdic[ID + "_FR2"] + mutationdic[ID + "_CDR2"] + mutationdic[ID + "_FR3"]
+
+ cdr1Length = linesplt[cdr1LengthIndex]
+ cdr2Length = linesplt[cdr2LengthIndex]
+
+ cdr1LengthDic[ID] = int(cdr1Length) / 3
+ cdr2LengthDic[ID] = int(cdr2Length) / 3
+
+ IDlist += [ID]
+
+AALength = (int(max(mutationList, key=lambda i: int(i[4]) if i[4] else 0)[4]) + 1) # [4] is the position of the AA mutation, None if silent
+
+AA_mutation = [0] * AALength
+AA_mutation_empty = AA_mutation[:]
+
+aa_mutations_by_id_file = outfile[:outfile.rindex("/")] + "/aa_id_mutations.txt"
+with open(aa_mutations_by_id_file, 'w') as o:
+ for ID in mutationListByID.keys():
+ AA_mutation_for_ID = AA_mutation_empty[:]
+ for mutation in mutationListByID[ID]:
+ if mutation[4]:
+ AA_mutation[int(mutation[4])] += 1
+ AA_mutation_for_ID[int(mutation[4])] += 1
+ o.write(ID + "\t" + "\t".join([str(x) for x in AA_mutation_for_ID[1:]]) + "\n")
+
+
+
+#absent AA stuff
+absentAACDR1Dic = defaultdict(list)
+absentAACDR1Dic[5] = range(29,36)
+absentAACDR1Dic[6] = range(29,35)
+absentAACDR1Dic[7] = range(30,35)
+absentAACDR1Dic[8] = range(30,34)
+absentAACDR1Dic[9] = range(31,34)
+absentAACDR1Dic[10] = range(31,33)
+absentAACDR1Dic[11] = [32]
+
+absentAACDR2Dic = defaultdict(list)
+absentAACDR2Dic[0] = range(55,65)
+absentAACDR2Dic[1] = range(56,65)
+absentAACDR2Dic[2] = range(56,64)
+absentAACDR2Dic[3] = range(57,64)
+absentAACDR2Dic[4] = range(57,63)
+absentAACDR2Dic[5] = range(58,63)
+absentAACDR2Dic[6] = range(58,62)
+absentAACDR2Dic[7] = range(59,62)
+absentAACDR2Dic[8] = range(59,61)
+absentAACDR2Dic[9] = [60]
+
+absentAA = [len(IDlist)] * (AALength-1)
+for k, cdr1Length in cdr1LengthDic.iteritems():
+ for c in absentAACDR1Dic[cdr1Length]:
+ absentAA[c] -= 1
+
+for k, cdr2Length in cdr2LengthDic.iteritems():
+ for c in absentAACDR2Dic[cdr2Length]:
+ absentAA[c] -= 1
+
+
+aa_mutations_by_id_file = outfile[:outfile.rindex("/")] + "/absent_aa_id.txt"
+with open(aa_mutations_by_id_file, 'w') as o:
+ o.write("ID\tcdr1length\tcdr2length\t" + "\t".join([str(x) for x in range(1,AALength-1)]) + "\n")
+ for ID in IDlist:
+ absentAAbyID = [1] * (AALength-1)
+ cdr1Length = cdr1LengthDic[ID]
+ for c in absentAACDR1Dic[cdr1Length]:
+ absentAAbyID[c] -= 1
+
+ cdr2Length = cdr2LengthDic[ID]
+ for c in absentAACDR2Dic[cdr2Length]:
+ absentAAbyID[c] -= 1
+ o.write(ID + "\t" + str(cdr1Length) + "\t" + str(cdr2Length) + "\t" + "\t".join([str(x) for x in absentAAbyID]) + "\n")
+
+
+
+aa_mutations_file = outfile[:outfile.rindex("/")] + "/aa_mutations.txt"
+with open(aa_mutations_file, 'w') as o:
+ o.write("row.name\t" + "\t".join([str(x) for x in range(1, AALength-1)]) + "\n")
+ o.write("mutations.at.position\t" + "\t".join([str(x) for x in AA_mutation[1:]]) + "\n")
+ o.write("AA.at.position\t" + "\t".join([str(x) for x in absentAA]) + "\n")
+
+if linecount == 0:
+ print "No data, exiting"
+ with open(outfile, 'w') as o:
+ o.write("RGYW (%)," + ("0,0,0\n" * len(genes)))
+ o.write("WRCY (%)," + ("0,0,0\n" * len(genes)))
+ o.write("WA (%)," + ("0,0,0\n" * len(genes)))
+ o.write("TW (%)," + ("0,0,0\n" * len(genes)))
+ import sys
+
+ sys.exit()
+
+hotspotMatcher = re.compile("[actg]+,(\d+)-(\d+)\((.*)\)")
+RGYWCount = {g: 0 for g in genes}
+WRCYCount = {g: 0 for g in genes}
+WACount = {g: 0 for g in genes}
+TWCount = {g: 0 for g in genes}
+
+IDIndex = 0
+ataIndex = 0
+tatIndex = 0
+aggctatIndex = 0
+atagcctIndex = 0
+first = True
+with open(infile, 'r') as i:
+ for line in i:
+ if first:
+ linesplt = line.split("\t")
+ ataIndex = linesplt.index("X.a.t.a")
+ tatIndex = linesplt.index("t.a.t.")
+ aggctatIndex = linesplt.index("X.a.g.g.c.t..a.t.")
+ atagcctIndex = linesplt.index("X.a.t..a.g.c.c.t.")
+ first = False
+ continue
+ linesplt = line.split("\t")
+ gene = linesplt[best_matchIndex]
+ ID = linesplt[IDIndex]
+ RGYW = [(int(x), int(y), z) for (x, y, z) in
+ [hotspotMatcher.match(x).groups() for x in linesplt[aggctatIndex].split("|") if x]]
+ WRCY = [(int(x), int(y), z) for (x, y, z) in
+ [hotspotMatcher.match(x).groups() for x in linesplt[atagcctIndex].split("|") if x]]
+ WA = [(int(x), int(y), z) for (x, y, z) in
+ [hotspotMatcher.match(x).groups() for x in linesplt[ataIndex].split("|") if x]]
+ TW = [(int(x), int(y), z) for (x, y, z) in
+ [hotspotMatcher.match(x).groups() for x in linesplt[tatIndex].split("|") if x]]
+ RGYWCount[ID], WRCYCount[ID], WACount[ID], TWCount[ID] = 0, 0, 0, 0
+
+ mutationList = (mutationdic[ID + "_FR1"] if include_fr1 else []) + mutationdic[ID + "_CDR1"] + mutationdic[
+ ID + "_FR2"] + mutationdic[ID + "_CDR2"] + mutationdic[ID + "_FR3"]
+ for mutation in mutationList:
+ frm, where, to, AAfrm, AAwhere, AAto, junk = mutation
+ mutation_in_RGYW = any([(start <= int(where) <= end) for (start, end, region) in RGYW])
+ mutation_in_WRCY = any([(start <= int(where) <= end) for (start, end, region) in WRCY])
+ mutation_in_WA = any([(start <= int(where) <= end) for (start, end, region) in WA])
+ mutation_in_TW = any([(start <= int(where) <= end) for (start, end, region) in TW])
+
+ in_how_many_motifs = sum([mutation_in_RGYW, mutation_in_WRCY, mutation_in_WA, mutation_in_TW])
+
+ if in_how_many_motifs > 0:
+ RGYWCount[ID] += (1.0 * int(mutation_in_RGYW)) / in_how_many_motifs
+ WRCYCount[ID] += (1.0 * int(mutation_in_WRCY)) / in_how_many_motifs
+ WACount[ID] += (1.0 * int(mutation_in_WA)) / in_how_many_motifs
+ TWCount[ID] += (1.0 * int(mutation_in_TW)) / in_how_many_motifs
+
+directory = outfile[:outfile.rfind("/") + 1]
+value = 0
+valuedic = dict()
+for gene in genes:
+ with open(directory + gene + "_value.txt", 'r') as v:
+ valuedic[gene] = int(v.readlines()[0].rstrip())
+with open(directory + "total_value.txt", 'r') as v:
+ valuedic["total"] = int(v.readlines()[0].rstrip())
+
+dic = {"RGYW": RGYWCount, "WRCY": WRCYCount, "WA": WACount, "TW": TWCount}
+arr = ["RGYW", "WRCY", "WA", "TW"]
+with open(outfile, 'w') as o:
+ for typ in arr:
+ o.write(typ + " (%)")
+ curr = dic[typ]
+ for gene in genes:
+ geneMatcher = re.compile(".*" + gene + ".*")
+ if valuedic[gene] is 0:
+ o.write(",0,0,0")
+ else:
+ x = int(round(sum([curr[x] for x in [y for y, z in genedic.iteritems() if geneMatcher.match(z)]])))
+ y = valuedic[gene]
+ z = str(round(x / float(valuedic[gene]) * 100, 1))
+ o.write("," + str(x) + "," + str(y) + "," + z)
+ # for total
+ x = int(round(sum([y for x, y in curr.iteritems()])))
+ y = valuedic["total"]
+ z = str(round(x / float(valuedic["total"]) * 100, 1))
+ o.write("," + str(x) + "," + str(y) + "," + z + "\n")
+
+
+# for testing
+seq_motif_file = outfile[:outfile.rindex("/")] + "/motif_per_seq.txt"
+with open(seq_motif_file, 'w') as o:
+ o.write("ID\tRGYWC\tWRCY\tWA\tTW\n")
+ for ID in IDlist:
+ o.write(ID + "\t" + str(round(RGYWCount[ID], 2)) + "\t" + str(round(WRCYCount[ID], 2)) + "\t" + str(
+ round(WACount[ID], 2)) + "\t" + str(round(TWCount[ID], 2)) + "\n")
diff -r d3542f87a304 -r 7290a88ea202 mutation_analysis.r
--- a/mutation_analysis.r Fri Jan 29 08:11:31 2016 -0500
+++ b/mutation_analysis.r Mon Feb 29 10:49:39 2016 -0500
@@ -170,55 +170,53 @@
setwd(outputdir)
-nts = c("a", "c", "g", "t")
-zeros=rep(0, 4)
-matrx = matrix(data = 0, ncol=((length(genes) + 1) * 3),nrow=9)
-for(i in 1:length(genes)){
- gene = genes[i]
+
+calculate_result = function(i, gene, dat, matrx, f, fname, name){
tmp = dat[grepl(paste(".*", gene, ".*", sep=""), dat$best_match),]
- if(gene == "."){
- tmp = dat
- }
+
j = i - 1
x = (j * 3) + 1
y = (j * 3) + 2
z = (j * 3) + 3
- matrx[1,x] = sum(tmp$VRegionMutations)
- matrx[1,y] = sum(tmp$VRegionNucleotides)
- matrx[1,z] = round(matrx[1,x] / matrx[1,y] * 100, digits=1)
-
- matrx[2,x] = sum(tmp$transitionMutations)
- matrx[2,y] = sum(tmp$VRegionMutations)
- matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1)
-
- matrx[3,x] = sum(tmp$transversionMutations)
- matrx[3,y] = sum(tmp$VRegionMutations)
- matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1)
-
- matrx[4,x] = sum(tmp$transitionMutationsAtGC)
- matrx[4,y] = sum(tmp$totalMutationsAtGC)
- matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1)
-
- matrx[5,x] = sum(tmp$totalMutationsAtGC)
- matrx[5,y] = sum(tmp$VRegionMutations)
- matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1)
-
- matrx[6,x] = sum(tmp$transitionMutationsAtAT)
- matrx[6,y] = sum(tmp$totalMutationsAtAT)
- matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1)
-
- matrx[7,x] = sum(tmp$totalMutationsAtAT)
- matrx[7,y] = sum(tmp$VRegionMutations)
- matrx[7,z] = round(matrx[7,x] / matrx[7,y] * 100, digits=1)
-
- matrx[8,x] = sum(tmp$nonSilentMutationsFR)
- matrx[8,y] = sum(tmp$silentMutationsFR)
- matrx[8,z] = round(matrx[8,x] / matrx[8,y], digits=1)
-
- matrx[9,x] = sum(tmp$nonSilentMutationsCDR)
- matrx[9,y] = sum(tmp$silentMutationsCDR)
- matrx[9,z] = round(matrx[9,x] / matrx[9,y], digits=1)
-
+
+ if(nrow(tmp) > 0){
+
+ matrx[1,x] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
+ matrx[1,y] = round(f(tmp$VRegionNucleotides, na.rm=T), digits=1)
+ matrx[1,z] = round(matrx[1,x] / matrx[1,y] * 100, digits=1)
+
+ matrx[2,x] = round(f(tmp$transitionMutations, na.rm=T), digits=1)
+ matrx[2,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
+ matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1)
+
+ matrx[3,x] = round(f(tmp$transversionMutations, na.rm=T), digits=1)
+ matrx[3,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
+ matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1)
+
+ matrx[4,x] = round(f(tmp$transitionMutationsAtGC, na.rm=T), digits=1)
+ matrx[4,y] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1)
+ matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1)
+
+ matrx[5,x] = round(f(tmp$totalMutationsAtGC, na.rm=T), digits=1)
+ matrx[5,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
+ matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1)
+
+ matrx[6,x] = round(f(tmp$transitionMutationsAtAT, na.rm=T), digits=1)
+ matrx[6,y] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1)
+ matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1)
+
+ matrx[7,x] = round(f(tmp$totalMutationsAtAT, na.rm=T), digits=1)
+ matrx[7,y] = round(f(tmp$VRegionMutations, na.rm=T), digits=1)
+ matrx[7,z] = round(matrx[7,x] / matrx[7,y] * 100, digits=1)
+
+ matrx[8,x] = round(f(tmp$nonSilentMutationsFR, na.rm=T), digits=1)
+ matrx[8,y] = round(f(tmp$silentMutationsFR, na.rm=T), digits=1)
+ matrx[8,z] = round(matrx[8,x] / matrx[8,y], digits=1)
+
+ matrx[9,x] = round(f(tmp$nonSilentMutationsCDR, na.rm=T), digits=1)
+ matrx[9,y] = round(f(tmp$silentMutationsCDR, na.rm=T), digits=1)
+ matrx[9,z] = round(matrx[9,x] / matrx[9,y], digits=1)
+ }
transitionTable = data.frame(A=zeros,C=zeros,G=zeros,T=zeros)
row.names(transitionTable) = c("A", "C", "G", "T")
@@ -250,93 +248,40 @@
}
- write.table(x=transitionTable, file=paste("transitions_", gene ,".txt", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
- write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file=paste("matched_", gene ,".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
+ print(paste("writing value file: ", name, "_", fname, "_value.txt" ,sep=""))
+
+ write.table(x=transitionTable, file=paste("transitions_", name ,"_", fname, ".txt", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
+ write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file=paste("matched_", name , "_", fname, ".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
- cat(matrx[1,x], file=paste(gene, "_value.txt" ,sep=""))
- cat(length(tmp$Sequence.ID), file=paste(gene, "_n.txt" ,sep=""))
+ cat(matrx[1,x], file=paste(name, "_", fname, "_value.txt" ,sep=""))
+ cat(length(tmp$Sequence.ID), file=paste(name, "_", fname, "_n.txt" ,sep=""))
+
+ matrx
}
-#again for all of the data
-tmp = dat
-j = i
-x = (j * 3) + 1
-y = (j * 3) + 2
-z = (j * 3) + 3
-matrx[1,x] = sum(tmp$VRegionMutations)
-matrx[1,y] = sum(tmp$VRegionNucleotides)
-matrx[1,z] = round(matrx[1,x] / matrx[1,y] * 100, digits=1)
+nts = c("a", "c", "g", "t")
+zeros=rep(0, 4)
-matrx[2,x] = sum(tmp$transitionMutations)
-matrx[2,y] = sum(tmp$VRegionMutations)
-matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1)
-
-matrx[3,x] = sum(tmp$transversionMutations)
-matrx[3,y] = sum(tmp$VRegionMutations)
-matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1)
+funcs = c(median, sum, mean)
+fnames = c("median", "sum", "mean")
-matrx[4,x] = sum(tmp$transitionMutationsAtGC)
-matrx[4,y] = sum(tmp$totalMutationsAtGC)
-matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1)
-
-matrx[5,x] = sum(tmp$totalMutationsAtGC)
-matrx[5,y] = sum(tmp$VRegionMutations)
-matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1)
-
-matrx[6,x] = sum(tmp$transitionMutationsAtAT)
-matrx[6,y] = sum(tmp$totalMutationsAtAT)
-matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1)
-
-matrx[7,x] = sum(tmp$totalMutationsAtAT)
-matrx[7,y] = sum(tmp$VRegionMutations)
-matrx[7,z] = round(matrx[7,x] / matrx[7,y] * 100, digits=1)
-
-matrx[8,x] = sum(tmp$nonSilentMutationsFR)
-matrx[8,y] = sum(tmp$silentMutationsFR)
-matrx[8,z] = round(matrx[8,x] / matrx[8,y], digits=1)
+for(i in 1:length(funcs)){
+ func = funcs[[i]]
+ fname = fnames[[i]]
+
+ matrx = matrix(data = 0, ncol=((length(genes) + 1) * 3),nrow=9)
-matrx[9,x] = sum(tmp$nonSilentMutationsCDR)
-matrx[9,y] = sum(tmp$silentMutationsCDR)
-matrx[9,z] = round(matrx[9,x] / matrx[9,y], digits=1)
-
-transitionTable = data.frame(A=1:4,C=1:4,G=1:4,T=1:4)
-row.names(transitionTable) = c("A", "C", "G", "T")
-transitionTable["A","A"] = NA
-transitionTable["C","C"] = NA
-transitionTable["G","G"] = NA
-transitionTable["T","T"] = NA
-
+ for(i in 1:length(genes)){
+ matrx = calculate_result(i, genes[i], dat, matrx, func, fname, genes[i])
+ }
-for(nt1 in nts){
- for(nt2 in nts){
- if(nt1 == nt2){
- next
- }
- NT1 = LETTERS[letters == nt1]
- NT2 = LETTERS[letters == nt2]
- FR1 = paste("FR1.IMGT.", nt1, ".", nt2, sep="")
- CDR1 = paste("CDR1.IMGT.", nt1, ".", nt2, sep="")
- FR2 = paste("FR2.IMGT.", nt1, ".", nt2, sep="")
- CDR2 = paste("CDR2.IMGT.", nt1, ".", nt2, sep="")
- FR3 = paste("FR3.IMGT.", nt1, ".", nt2, sep="")
- if(include_fr1){
- transitionTable[NT1,NT2] = sum(tmp[,c(FR1, CDR1, FR2, CDR2, FR3)])
- } else {
- transitionTable[NT1,NT2] = sum(tmp[,c(CDR1, FR2, CDR2, FR3)])
- }
- }
+ matrx = calculate_result(i + 1, ".*", dat, matrx, func, fname, name="all")
+
+ result = data.frame(matrx)
+ row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)")
+
+ write.table(x=result, file=paste("mutations_", fname, ".txt", sep=""), sep=",",quote=F,row.names=T,col.names=F)
}
-write.table(x=transitionTable, file="transitions.txt", sep=",",quote=F,row.names=T,col.names=NA)
-write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file="matched_all.txt", sep="\t",quote=F,row.names=F,col.names=T)
-cat(matrx[1,x], file="total_value.txt")
-cat(length(tmp$Sequence.ID), file="total_n.txt")
-
-
-
-result = data.frame(matrx)
-row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)")
-
-write.table(x=result, file="mutations.txt", sep=",",quote=F,row.names=T,col.names=F)
if (!("ggplot2" %in% rownames(installed.packages()))) {
diff -r d3542f87a304 -r 7290a88ea202 mutation_analysis.r.bak
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/mutation_analysis.r.bak Mon Feb 29 10:49:39 2016 -0500
@@ -0,0 +1,469 @@
+library(data.table)
+library(ggplot2)
+
+args <- commandArgs(trailingOnly = TRUE)
+
+input = args[1]
+genes = unlist(strsplit(args[2], ","))
+outputdir = args[3]
+print(args[4])
+include_fr1 = ifelse(args[4] == "yes", T, F)
+setwd(outputdir)
+
+dat = read.table(input, header=T, sep="\t", fill=T, stringsAsFactors=F)
+
+if(length(dat$Sequence.ID) == 0){
+ setwd(outputdir)
+ result = data.frame(x = rep(0, 5), y = rep(0, 5), z = rep(NA, 5))
+ row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)")
+ write.table(x=result, file="mutations.txt", sep=",",quote=F,row.names=T,col.names=F)
+ transitionTable = data.frame(A=rep(0, 4),C=rep(0, 4),G=rep(0, 4),T=rep(0, 4))
+ row.names(transitionTable) = c("A", "C", "G", "T")
+ transitionTable["A","A"] = NA
+ transitionTable["C","C"] = NA
+ transitionTable["G","G"] = NA
+ transitionTable["T","T"] = NA
+ write.table(x=transitionTable, file="transitions.txt", sep=",",quote=F,row.names=T,col.names=NA)
+ cat("0", file="n.txt")
+ stop("No data")
+}
+
+
+
+cleanup_columns = c("FR1.IMGT.c.a",
+ "FR2.IMGT.g.t",
+ "CDR1.IMGT.Nb.of.nucleotides",
+ "CDR2.IMGT.t.a",
+ "FR1.IMGT.c.g",
+ "CDR1.IMGT.c.t",
+ "FR2.IMGT.a.c",
+ "FR2.IMGT.Nb.of.mutations",
+ "FR2.IMGT.g.c",
+ "FR2.IMGT.a.g",
+ "FR3.IMGT.t.a",
+ "FR3.IMGT.t.c",
+ "FR2.IMGT.g.a",
+ "FR3.IMGT.c.g",
+ "FR1.IMGT.Nb.of.mutations",
+ "CDR1.IMGT.g.a",
+ "CDR1.IMGT.t.g",
+ "CDR1.IMGT.g.c",
+ "CDR2.IMGT.Nb.of.nucleotides",
+ "FR2.IMGT.a.t",
+ "CDR1.IMGT.Nb.of.mutations",
+ "CDR1.IMGT.a.g",
+ "FR3.IMGT.a.c",
+ "FR1.IMGT.g.a",
+ "FR3.IMGT.a.g",
+ "FR1.IMGT.a.t",
+ "CDR2.IMGT.a.g",
+ "CDR2.IMGT.Nb.of.mutations",
+ "CDR2.IMGT.g.t",
+ "CDR2.IMGT.a.c",
+ "CDR1.IMGT.t.c",
+ "FR3.IMGT.g.c",
+ "FR1.IMGT.g.t",
+ "FR3.IMGT.g.t",
+ "CDR1.IMGT.a.t",
+ "FR1.IMGT.a.g",
+ "FR3.IMGT.a.t",
+ "FR3.IMGT.Nb.of.nucleotides",
+ "FR2.IMGT.t.c",
+ "CDR2.IMGT.g.a",
+ "FR2.IMGT.t.a",
+ "CDR1.IMGT.t.a",
+ "FR2.IMGT.t.g",
+ "FR3.IMGT.t.g",
+ "FR2.IMGT.Nb.of.nucleotides",
+ "FR1.IMGT.t.a",
+ "FR1.IMGT.t.g",
+ "FR3.IMGT.c.t",
+ "FR1.IMGT.t.c",
+ "CDR2.IMGT.a.t",
+ "FR2.IMGT.c.t",
+ "CDR1.IMGT.g.t",
+ "CDR2.IMGT.t.g",
+ "FR1.IMGT.Nb.of.nucleotides",
+ "CDR1.IMGT.c.g",
+ "CDR2.IMGT.t.c",
+ "FR3.IMGT.g.a",
+ "CDR1.IMGT.a.c",
+ "FR2.IMGT.c.a",
+ "FR3.IMGT.Nb.of.mutations",
+ "FR2.IMGT.c.g",
+ "CDR2.IMGT.g.c",
+ "FR1.IMGT.g.c",
+ "CDR2.IMGT.c.t",
+ "FR3.IMGT.c.a",
+ "CDR1.IMGT.c.a",
+ "CDR2.IMGT.c.g",
+ "CDR2.IMGT.c.a",
+ "FR1.IMGT.c.t",
+ "FR1.IMGT.Nb.of.silent.mutations",
+ "FR2.IMGT.Nb.of.silent.mutations",
+ "FR3.IMGT.Nb.of.silent.mutations",
+ "FR1.IMGT.Nb.of.nonsilent.mutations",
+ "FR2.IMGT.Nb.of.nonsilent.mutations",
+ "FR3.IMGT.Nb.of.nonsilent.mutations")
+
+for(col in cleanup_columns){
+ dat[,col] = gsub("\\(.*\\)", "", dat[,col])
+ #dat[dat[,col] == "",] = "0"
+ dat[,col] = as.numeric(dat[,col])
+ dat[is.na(dat[,col]),] = 0
+}
+
+regions = c("FR1", "CDR1", "FR2", "CDR2", "FR3")
+if(!include_fr1){
+ regions = c("CDR1", "FR2", "CDR2", "FR3")
+}
+
+sum_by_row = function(x, columns) { sum(as.numeric(x[columns]), na.rm=T) }
+
+VRegionMutations_columns = paste(regions, ".IMGT.Nb.of.mutations", sep="")
+dat$VRegionMutations = apply(dat, FUN=sum_by_row, 1, columns=VRegionMutations_columns)
+
+VRegionNucleotides_columns = paste(regions, ".IMGT.Nb.of.nucleotides", sep="")
+dat$VRegionNucleotides = apply(dat, FUN=sum_by_row, 1, columns=VRegionNucleotides_columns)
+
+transitionMutations_columns = paste(rep(regions, each=4), c(".IMGT.a.g", ".IMGT.g.a", ".IMGT.c.t", ".IMGT.t.c"), sep="")
+dat$transitionMutations = apply(dat, FUN=sum_by_row, 1, columns=transitionMutations_columns)
+
+transversionMutations_columns = paste(rep(regions, each=8), c(".IMGT.a.c",".IMGT.c.a",".IMGT.a.t",".IMGT.t.a",".IMGT.g.c",".IMGT.c.g",".IMGT.g.t",".IMGT.t.g"), sep="")
+dat$transversionMutations = apply(dat, FUN=sum_by_row, 1, columns=transversionMutations_columns)
+
+
+transitionMutationsAtGC_columns = paste(rep(regions, each=2), c(".IMGT.g.a",".IMGT.c.t"), sep="")
+dat$transitionMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtGC_columns)
+
+
+totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.c.g",".IMGT.c.t",".IMGT.c.a",".IMGT.g.c",".IMGT.g.a",".IMGT.g.t"), sep="")
+#totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.g.a",".IMGT.c.t",".IMGT.c.a",".IMGT.c.g",".IMGT.g.t"), sep="")
+dat$totalMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtGC_columns)
+
+transitionMutationsAtAT_columns = paste(rep(regions, each=2), c(".IMGT.a.g",".IMGT.t.c"), sep="")
+dat$transitionMutationsAtAT = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtAT_columns)
+
+totalMutationsAtAT_columns = paste(rep(regions, each=6), c(".IMGT.a.g",".IMGT.a.c",".IMGT.a.t",".IMGT.t.g",".IMGT.t.c",".IMGT.t.a"), sep="")
+#totalMutationsAtAT_columns = paste(rep(regions, each=5), c(".IMGT.a.g",".IMGT.t.c",".IMGT.a.c",".IMGT.g.c",".IMGT.t.g"), sep="")
+dat$totalMutationsAtAT = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtAT_columns)
+
+
+FRRegions = regions[grepl("FR", regions)]
+CDRRegions = regions[grepl("CDR", regions)]
+
+FR_silentMutations_columns = paste(FRRegions, ".IMGT.Nb.of.silent.mutations", sep="")
+dat$silentMutationsFR = apply(dat, FUN=sum_by_row, 1, columns=FR_silentMutations_columns)
+
+CDR_silentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.silent.mutations", sep="")
+dat$silentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_silentMutations_columns)
+
+FR_nonSilentMutations_columns = paste(FRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="")
+dat$nonSilentMutationsFR = apply(dat, FUN=sum_by_row, 1, columns=FR_nonSilentMutations_columns)
+
+CDR_nonSilentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="")
+dat$nonSilentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_nonSilentMutations_columns)
+
+mutation.sum.columns = c("Sequence.ID", "VRegionMutations", "VRegionNucleotides", "transitionMutations", "transversionMutations", "transitionMutationsAtGC", "transitionMutationsAtAT", "silentMutationsFR", "nonSilentMutationsFR", "silentMutationsCDR", "nonSilentMutationsCDR")
+
+write.table(dat[,mutation.sum.columns], "mutation_by_id.txt", sep="\t",quote=F,row.names=F,col.names=T)
+
+setwd(outputdir)
+
+nts = c("a", "c", "g", "t")
+zeros=rep(0, 4)
+matrx = matrix(data = 0, ncol=((length(genes) + 1) * 3),nrow=9)
+for(i in 1:length(genes)){
+ gene = genes[i]
+ tmp = dat[grepl(paste(".*", gene, ".*", sep=""), dat$best_match),]
+ if(gene == "."){
+ tmp = dat
+ }
+ j = i - 1
+ x = (j * 3) + 1
+ y = (j * 3) + 2
+ z = (j * 3) + 3
+ matrx[1,x] = sum(tmp$VRegionMutations)
+ matrx[1,y] = sum(tmp$VRegionNucleotides)
+ matrx[1,z] = round(matrx[1,x] / matrx[1,y] * 100, digits=1)
+
+ matrx[2,x] = sum(tmp$transitionMutations)
+ matrx[2,y] = sum(tmp$VRegionMutations)
+ matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1)
+
+ matrx[3,x] = sum(tmp$transversionMutations)
+ matrx[3,y] = sum(tmp$VRegionMutations)
+ matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1)
+
+ matrx[4,x] = sum(tmp$transitionMutationsAtGC)
+ matrx[4,y] = sum(tmp$totalMutationsAtGC)
+ matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1)
+
+ matrx[5,x] = sum(tmp$totalMutationsAtGC)
+ matrx[5,y] = sum(tmp$VRegionMutations)
+ matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1)
+
+ matrx[6,x] = sum(tmp$transitionMutationsAtAT)
+ matrx[6,y] = sum(tmp$totalMutationsAtAT)
+ matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1)
+
+ matrx[7,x] = sum(tmp$totalMutationsAtAT)
+ matrx[7,y] = sum(tmp$VRegionMutations)
+ matrx[7,z] = round(matrx[7,x] / matrx[7,y] * 100, digits=1)
+
+ matrx[8,x] = sum(tmp$nonSilentMutationsFR)
+ matrx[8,y] = sum(tmp$silentMutationsFR)
+ matrx[8,z] = round(matrx[8,x] / matrx[8,y], digits=1)
+
+ matrx[9,x] = sum(tmp$nonSilentMutationsCDR)
+ matrx[9,y] = sum(tmp$silentMutationsCDR)
+ matrx[9,z] = round(matrx[9,x] / matrx[9,y], digits=1)
+
+
+ transitionTable = data.frame(A=zeros,C=zeros,G=zeros,T=zeros)
+ row.names(transitionTable) = c("A", "C", "G", "T")
+ transitionTable["A","A"] = NA
+ transitionTable["C","C"] = NA
+ transitionTable["G","G"] = NA
+ transitionTable["T","T"] = NA
+
+ if(nrow(tmp) > 0){
+ for(nt1 in nts){
+ for(nt2 in nts){
+ if(nt1 == nt2){
+ next
+ }
+ NT1 = LETTERS[letters == nt1]
+ NT2 = LETTERS[letters == nt2]
+ FR1 = paste("FR1.IMGT.", nt1, ".", nt2, sep="")
+ CDR1 = paste("CDR1.IMGT.", nt1, ".", nt2, sep="")
+ FR2 = paste("FR2.IMGT.", nt1, ".", nt2, sep="")
+ CDR2 = paste("CDR2.IMGT.", nt1, ".", nt2, sep="")
+ FR3 = paste("FR3.IMGT.", nt1, ".", nt2, sep="")
+ if(include_fr1){
+ transitionTable[NT1,NT2] = sum(tmp[,c(FR1, CDR1, FR2, CDR2, FR3)])
+ } else {
+ transitionTable[NT1,NT2] = sum(tmp[,c(CDR1, FR2, CDR2, FR3)])
+ }
+ }
+ }
+ }
+
+
+ write.table(x=transitionTable, file=paste("transitions_", gene ,".txt", sep=""), sep=",",quote=F,row.names=T,col.names=NA)
+ write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file=paste("matched_", gene ,".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T)
+
+ cat(matrx[1,x], file=paste(gene, "_value.txt" ,sep=""))
+ cat(length(tmp$Sequence.ID), file=paste(gene, "_n.txt" ,sep=""))
+}
+
+#again for all of the data
+tmp = dat
+j = i
+x = (j * 3) + 1
+y = (j * 3) + 2
+z = (j * 3) + 3
+matrx[1,x] = sum(tmp$VRegionMutations)
+matrx[1,y] = sum(tmp$VRegionNucleotides)
+matrx[1,z] = round(matrx[1,x] / matrx[1,y] * 100, digits=1)
+
+matrx[2,x] = sum(tmp$transitionMutations)
+matrx[2,y] = sum(tmp$VRegionMutations)
+matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1)
+
+matrx[3,x] = sum(tmp$transversionMutations)
+matrx[3,y] = sum(tmp$VRegionMutations)
+matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1)
+
+matrx[4,x] = sum(tmp$transitionMutationsAtGC)
+matrx[4,y] = sum(tmp$totalMutationsAtGC)
+matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1)
+
+matrx[5,x] = sum(tmp$totalMutationsAtGC)
+matrx[5,y] = sum(tmp$VRegionMutations)
+matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1)
+
+matrx[6,x] = sum(tmp$transitionMutationsAtAT)
+matrx[6,y] = sum(tmp$totalMutationsAtAT)
+matrx[6,z] = round(matrx[6,x] / matrx[6,y] * 100, digits=1)
+
+matrx[7,x] = sum(tmp$totalMutationsAtAT)
+matrx[7,y] = sum(tmp$VRegionMutations)
+matrx[7,z] = round(matrx[7,x] / matrx[7,y] * 100, digits=1)
+
+matrx[8,x] = sum(tmp$nonSilentMutationsFR)
+matrx[8,y] = sum(tmp$silentMutationsFR)
+matrx[8,z] = round(matrx[8,x] / matrx[8,y], digits=1)
+
+matrx[9,x] = sum(tmp$nonSilentMutationsCDR)
+matrx[9,y] = sum(tmp$silentMutationsCDR)
+matrx[9,z] = round(matrx[9,x] / matrx[9,y], digits=1)
+
+transitionTable = data.frame(A=1:4,C=1:4,G=1:4,T=1:4)
+row.names(transitionTable) = c("A", "C", "G", "T")
+transitionTable["A","A"] = NA
+transitionTable["C","C"] = NA
+transitionTable["G","G"] = NA
+transitionTable["T","T"] = NA
+
+
+for(nt1 in nts){
+ for(nt2 in nts){
+ if(nt1 == nt2){
+ next
+ }
+ NT1 = LETTERS[letters == nt1]
+ NT2 = LETTERS[letters == nt2]
+ FR1 = paste("FR1.IMGT.", nt1, ".", nt2, sep="")
+ CDR1 = paste("CDR1.IMGT.", nt1, ".", nt2, sep="")
+ FR2 = paste("FR2.IMGT.", nt1, ".", nt2, sep="")
+ CDR2 = paste("CDR2.IMGT.", nt1, ".", nt2, sep="")
+ FR3 = paste("FR3.IMGT.", nt1, ".", nt2, sep="")
+ if(include_fr1){
+ transitionTable[NT1,NT2] = sum(tmp[,c(FR1, CDR1, FR2, CDR2, FR3)])
+ } else {
+ transitionTable[NT1,NT2] = sum(tmp[,c(CDR1, FR2, CDR2, FR3)])
+ }
+ }
+}
+write.table(x=transitionTable, file="transitions.txt", sep=",",quote=F,row.names=T,col.names=NA)
+write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file="matched_all.txt", sep="\t",quote=F,row.names=F,col.names=T)
+cat(matrx[1,x], file="total_value.txt")
+cat(length(tmp$Sequence.ID), file="total_n.txt")
+
+
+
+result = data.frame(matrx)
+row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)")
+
+write.table(x=result, file="mutations.txt", sep=",",quote=F,row.names=T,col.names=F)
+
+
+if (!("ggplot2" %in% rownames(installed.packages()))) {
+ install.packages("ggplot2", repos="http://cran.xl-mirror.nl/")
+}
+
+
+genesForPlot = gsub("[0-9]", "", dat$best_match)
+genesForPlot = data.frame(table(genesForPlot))
+colnames(genesForPlot) = c("Gene","Freq")
+genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq)
+write.table(genesForPlot, "all.txt", sep="\t",quote=F,row.names=F,col.names=T)
+
+
+pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=label))
+pc = pc + geom_bar(width = 1, stat = "identity")
+pc = pc + coord_polar(theta="y")
+pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("Classes", "( n =", sum(genesForPlot$Freq), ")"))
+
+png(filename="all.png")
+pc
+dev.off()
+
+
+#blegh
+genesForPlot = dat[grepl("ca", dat$best_match),]$best_match
+if(length(genesForPlot) > 0){
+ genesForPlot = data.frame(table(genesForPlot))
+ colnames(genesForPlot) = c("Gene","Freq")
+ genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq)
+
+ pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=label))
+ pc = pc + geom_bar(width = 1, stat = "identity")
+ pc = pc + coord_polar(theta="y")
+ pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IgA subclasses", "( n =", sum(genesForPlot$Freq), ")"))
+ write.table(genesForPlot, "ca.txt", sep="\t",quote=F,row.names=F,col.names=T)
+
+ png(filename="ca.png")
+ print(pc)
+ dev.off()
+}
+
+genesForPlot = dat[grepl("cg", dat$best_match),]$best_match
+if(length(genesForPlot) > 0){
+ genesForPlot = data.frame(table(genesForPlot))
+ colnames(genesForPlot) = c("Gene","Freq")
+ genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq)
+
+ pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=label))
+ pc = pc + geom_bar(width = 1, stat = "identity")
+ pc = pc + coord_polar(theta="y")
+ pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IgG subclasses", "( n =", sum(genesForPlot$Freq), ")"))
+ write.table(genesForPlot, "cg.txt", sep="\t",quote=F,row.names=F,col.names=T)
+
+ png(filename="cg.png")
+ print(pc)
+ dev.off()
+}
+
+dat$percentage_mutations = round(dat$VRegionMutations / dat$VRegionNucleotides * 100, 2)
+
+p = ggplot(dat, aes(best_match, percentage_mutations))
+p = p + geom_point(aes(colour=best_match), position="jitter") + geom_boxplot(aes(middle=mean(percentage_mutations)), alpha=0.1, outlier.shape = NA)
+p = p + xlab("Subclass") + ylab("Frequency") + ggtitle("Frequency scatter plot")
+
+png(filename="scatter.png")
+print(p)
+dev.off()
+
+write.table(dat[,c("Sequence.ID", "best_match", "VRegionMutations", "VRegionNucleotides", "percentage_mutations")], "scatter.txt", sep="\t",quote=F,row.names=F,col.names=T)
+
+write.table(dat, input, sep="\t",quote=F,row.names=F,col.names=T)
+
+
+
+
+
+
+dat$best_match_class = substr(dat$best_match, 0, 2)
+freq_labels = c("0", "0-2", "2-5", "5-10", "10-15", "15-20", "20")
+dat$frequency_bins = cut(dat$percentage_mutations, breaks=c(-Inf, 0, 2,5,10,15,20, Inf), labels=freq_labels)
+
+frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match_class", "frequency_bins")])
+
+p = ggplot(frequency_bins_data, aes(frequency_bins, frequency_count))
+p = p + geom_bar(aes(fill=best_match_class), stat="identity", position="dodge")
+p = p + xlab("Frequency ranges") + ylab("Frequency") + ggtitle("Mutation Frequencies by class")
+
+png(filename="frequency_ranges.png")
+print(p)
+dev.off()
+
+frequency_bins_data_by_class = frequency_bins_data
+
+write.table(frequency_bins_data_by_class, "frequency_ranges_classes.txt", sep="\t",quote=F,row.names=F,col.names=T)
+
+frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match", "frequency_bins")])
+
+write.table(frequency_bins_data, "frequency_ranges_subclasses.txt", sep="\t",quote=F,row.names=F,col.names=T)
+
+
+#frequency_bins_data_by_class
+#frequency_ranges_subclasses.txt
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff -r d3542f87a304 -r 7290a88ea202 wrapper.sh
--- a/wrapper.sh Fri Jan 29 08:11:31 2016 -0500
+++ b/wrapper.sh Mon Feb 29 10:49:39 2016 -0500
@@ -33,6 +33,8 @@
cat $PWD/files/*/8_* > $PWD/mutationstats.txt
cat $PWD/files/*/10_* > $PWD/hotspots.txt
+cp $dir/tabber.js $outdir
+
#BLASTN_DIR="/home/galaxy/tmp/blast/ncbi-blast-2.2.30+/bin"
echo "${BLASTN_DIR}"
@@ -63,36 +65,54 @@
genes="ca,ca1,ca2,cg,cg1,cg2,cg3,cg4,cm"
echo "R mutation analysis"
Rscript $dir/mutation_analysis.r $outdir/merged.txt $genes $outdir ${include_fr1} 2>&1
+
+#echo "." > $output
+#exit 0
+
echo "python mutation analysis"
python $dir/mutation_analysis.py --input $outdir/merged.txt --genes $genes --includefr1 "${include_fr1}" --output $outdir/hotspot_analysis.txt
echo "R AA histogram"
Rscript $dir/aa_histogram.r $outdir/aa_mutations.txt $outdir/aa_histogram.png 2>&1
-cat $outdir/mutations.txt $outdir/hotspot_analysis.txt > $outdir/result.txt
genes=(ca ca1 ca2 cg cg1 cg2 cg3 cg4 cm)
+funcs=(sum mean median)
-echo "
$title
" > $output
-echo "info | " >> $output
-for gene in ${genes[@]}
+
+echo "$title
" >> $output
+
+for func in ${funcs[@]}
do
- tmp=`cat $outdir/${gene}_n.txt`
- echo "${gene} (N = $tmp) | " >> $output
-done
-tmp=`cat $outdir/total_n.txt`
-echo "all (N = $tmp) | " >> $output
+ cat $outdir/mutations_${func}.txt $outdir/hotspot_analysis_${func}.txt > $outdir/result.txt
+
+ echo "${func} table
" >> $output
+ echo "info | " >> $output
+ for gene in ${genes[@]}
+ do
+ tmp=`cat $outdir/${gene}_${func}_n.txt`
+ echo "${gene} (N = $tmp) | " >> $output
+ done
+ tmp=`cat $outdir/all_${func}_n.txt`
+ echo "all (N = $tmp) | " >> $output
-while IFS=, read name cax cay caz ca1x ca1y ca1z ca2x ca2y ca2z cgx cgy cgz cg1x cg1y cg1z cg2x cg2y cg2z cg3x cg3y cg3z cg4x cg4y cg4z cmx cmy cmz allx ally allz
-do
- if [ "$name" == "FR S/R (ratio)" ] || [ "$name" == "CDR S/R (ratio)" ] ; then #meh
- echo "
---|
$name | ${cax}/${cay} (${caz}) | ${ca1x}/${ca1y} (${ca1z}) | ${ca2x}/${ca2y} (${ca2z}) | ${cgx}/${cgy} (${cgz}) | ${cg1x}/${cg1y} (${cg1z}) | ${cg2x}/${cg2y} (${cg2z}) | ${cg3x}/${cg3y} (${cg3z}) | ${cg4x}/${cg4y} (${cg4z}) | ${cmx}/${cmy} (${cmz}) | ${allx}/${ally} (${allz}) |
" >> $output
- else
- echo "$name | ${cax}/${cay} (${caz}%) | ${ca1x}/${ca1y} (${ca1z}%) | ${ca2x}/${ca2y} (${ca2z}%) | ${cgx}/${cgy} (${cgz}%) | ${cg1x}/${cg1y} (${cg1z}%) | ${cg2x}/${cg2y} (${cg2z}%) | ${cg3x}/${cg3y} (${cg3z}%) | ${cg4x}/${cg4y} (${cg4z}%) | ${cmx}/${cmy} (${cmz}%) | ${allx}/${ally} (${allz}%) |
" >> $output
- fi
-done < $outdir/result.txt
+ while IFS=, read name cax cay caz ca1x ca1y ca1z ca2x ca2y ca2z cgx cgy cgz cg1x cg1y cg1z cg2x cg2y cg2z cg3x cg3y cg3z cg4x cg4y cg4z cmx cmy cmz allx ally allz
+ do
+ if [ "$name" == "FR S/R (ratio)" ] || [ "$name" == "CDR S/R (ratio)" ] ; then #meh
+ echo "$name | ${cax}/${cay} (${caz}) | ${ca1x}/${ca1y} (${ca1z}) | ${ca2x}/${ca2y} (${ca2z}) | ${cgx}/${cgy} (${cgz}) | ${cg1x}/${cg1y} (${cg1z}) | ${cg2x}/${cg2y} (${cg2z}) | ${cg3x}/${cg3y} (${cg3z}) | ${cg4x}/${cg4y} (${cg4z}) | ${cmx}/${cmy} (${cmz}) | ${allx}/${ally} (${allz}) |
" >> $output
+ else
+ echo "$name | ${cax}/${cay} (${caz}%) | ${ca1x}/${ca1y} (${ca1z}%) | ${ca2x}/${ca2y} (${ca2z}%) | ${cgx}/${cgy} (${cgz}%) | ${cg1x}/${cg1y} (${cg1z}%) | ${cg2x}/${cg2y} (${cg2z}%) | ${cg3x}/${cg3y} (${cg3z}%) | ${cg4x}/${cg4y} (${cg4z}%) | ${cmx}/${cmy} (${cmz}%) | ${allx}/${ally} (${allz}%) |
" >> $output
+ fi
+ done < $outdir/result.txt
+
+done
+
echo "
" >> $output
-echo "unmatched
motif per sequence
all data
mutations by id
AA mutations location by id
Absant AA locations by id
" >> $output
-
+echo "unmatched
" >> $output
+echo "motif per sequence
" >> $output
+echo "all data
" >> $output
+echo "mutations by id
" >> $output
+echo "AA mutations location by id
" >> $output
+echo "Absant AA locations by id
" >> $output
echo "
" >> $output
echo "download data
" >> $output
@@ -129,7 +149,7 @@
while IFS=, read from a c g t
do
echo "
---|
$from | $a | $c | $g | $t |
" >> $output
- done < $outdir/transitions_${gene}.txt
+ done < $outdir/transitions_${gene}_sum.txt
echo "
" >> $output
done
@@ -137,7 +157,7 @@
while IFS=, read from a c g t
do
echo "$from | $a | $c | $g | $t |
" >> $output
-done < $outdir/transitions.txt
+done < $outdir/transitions_all_sum.txt
echo "" >> $output
echo "" >> $output