# HG changeset patch
# User davidvanzessen
# Date 1471871477 14400
# Node ID 4a93146f87aa84a0326b4c0166eca76da04a6ef3
# Parent 0453ea4d9f14dcff49372389406534308716eac3
Uploaded
diff -r 0453ea4d9f14 -r 4a93146f87aa pattern_plots.r
--- a/pattern_plots.r Mon Aug 22 07:00:23 2016 -0400
+++ b/pattern_plots.r Mon Aug 22 09:11:17 2016 -0400
@@ -1,17 +1,139 @@
library(ggplot2)
library(reshape2)
+library(scales)
args <- commandArgs(trailingOnly = TRUE)
input.file = args[1] #the data that's get turned into the "SHM overview" table in the html report "data_sum.txt"
-plot1.file = args[2]
-plot2.file = args[3]
-plot3.file = args[4]
+
+plot1.path = args[2]
+plot1.png = paste(plot1.path, ".png", sep="")
+plot1.txt = paste(plot1.path, ".txt", sep="")
-dat = read.table(input.file, header=F, sep=",", quote="", stringsAsFactors=F, fill=T)
+plot2.path = args[3]
+plot2.png = paste(plot2.path, ".png", sep="")
+plot2.txt = paste(plot2.path, ".txt", sep="")
+
+plot3.path = args[4]
+plot3.png = paste(plot3.path, ".png", sep="")
+plot3.txt = paste(plot3.path, ".txt", sep="")
+
+dat = read.table(input.file, header=F, sep=",", quote="", stringsAsFactors=F, fill=T, row.names=1)
+
+
classes = c("ca", "ca1", "ca2", "cg", "cg1", "cg2", "cg3", "cg4", "cm")
xyz = c("x", "y", "z")
+new.names = c(paste(rep(classes, each=3), xyz, sep="."), paste("un", xyz, sep="."), paste("all", xyz, sep="."))
-names(dat) = c("info", paste(rep(classes, each=3), xyz, sep="."), paste("un", xyz, sep="."), paste("all", xyz, sep="."))
+names(dat) = new.names
+
+dat["RGYW.WRCY",] = colSums(dat[c(13,14),])
+dat["TW.WA",] = colSums(dat[c(15,16),])
+
+data1 = dat[c("RGYW.WRCY", "TW.WA"),]
+
+data1 = data1[,names(data1)[grepl(".z", names(data1))]]
+names(data1) = gsub("\\..*", "", names(data1))
+
+data1 = melt(t(data1))
+
+names(data1) = c("Class", "Type", "value")
+
+write.table(data1, plot1.txt, quote=F, sep="\t", na="", row.names=F, col.names=T)
+
+p = ggplot(data1, aes(Class, value)) + geom_bar(aes(fill=Type), stat="identity", position="dodge") + ylab("% of mutations") + guides(fill=guide_legend(title=NULL))
+png(filename=plot1.png)
+print(p)
+dev.off()
+
+data2 = dat[5:8,]
+
+data2["sum",] = colSums(data2)
+
+data2 = data2[,names(data2)[grepl("\\.x", names(data2))]]
+names(data2) = gsub(".x", "", names(data2))
+
+data2["A/T",] = round(colSums(data2[3:4,]) / data2["sum",] * 100, 1)
+data2["A/T",is.nan(unlist(data2["A/T",]))] = 0
+
+data2["G/C transversions",] = round(data2[2,] / data2["sum",] * 100, 1)
+data2["G/C transitions",] = round(data2[1,] / data2["sum",] * 100, 1)
+
+
+data2["G/C transversions",is.nan(unlist(data2["G/C transversions",]))] = 0
+data2["G/C transversions",is.infinite(unlist(data2["G/C transversions",]))] = 0
+data2["G/C transitions",is.nan(unlist(data2["G/C transitions",]))] = 0
+data2["G/C transitions",is.infinite(unlist(data2["G/C transitions",]))] = 0
+
+data2 = melt(t(data2[6:8,]))
+
+names(data2) = c("Class", "Type", "value")
+
+write.table(data2, plot2.txt, quote=F, sep="\t", na="", row.names=F, col.names=T)
+
+p = ggplot(data2, aes(x=Class, y=value, fill=Type)) + geom_bar(position="fill", stat="identity") + scale_y_continuous(labels=percent_format()) + guides(fill=guide_legend(title=NULL)) + ylab("% of mutations")
+png(filename=plot2.png)
+print(p)
+dev.off()
+
+data3 = dat[c(5, 6, 8, 17:20),]
+data3 = data3[,names(data3)[grepl("\\.x", names(data3))]]
+names(data3) = gsub(".x", "", names(data3))
+data3["G/C transitions",] = round(data3[1,] / (data3[5,] + data3[7,]) * 100, 1)
+
+data3["G/C transversions",] = round(data3[2,] / (data3[5,] + data3[7,]) * 100, 1)
+
+data3["A/T",] = round(data3[3,] / (data3[4,] + data3[6,]) * 100, 1)
+
+data3["G/C transitions",is.nan(unlist(data3["G/C transitions",]))] = 0
+data3["G/C transitions",is.infinite(unlist(data3["G/C transitions",]))] = 0
+
+data3["G/C transversions",is.nan(unlist(data3["G/C transversions",]))] = 0
+data3["G/C transversions",is.infinite(unlist(data3["G/C transversions",]))] = 0
+
+data3["A/T",is.nan(unlist(data3["A/T",]))] = 0
+data3["A/T",is.infinite(unlist(data3["A/T",]))] = 0
+
+data3 = melt(t(data3[8:10,]))
+names(data3) = c("Class", "Type", "value")
+
+write.table(data3, plot3.txt, quote=F, sep="\t", na="", row.names=F, col.names=T)
+
+p = ggplot(data3, aes(Class, value)) + geom_bar(aes(fill=Type), stat="identity", position="dodge") + ylab("% of nucleotides") + guides(fill=guide_legend(title=NULL))
+png(filename=plot3.png)
+print(p)
+dev.off()
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff -r 0453ea4d9f14 -r 4a93146f87aa wrapper.sh
--- a/wrapper.sh Mon Aug 22 07:00:23 2016 -0400
+++ b/wrapper.sh Mon Aug 22 09:11:17 2016 -0400
@@ -237,6 +237,11 @@
cat $outdir/mutations_${func}.txt $outdir/hotspot_analysis_${func}.txt > $outdir/data_${func}.txt
+ echo "---------------- pattern_plots.r ----------------"
+ echo "---------------- pattern_plots.r ----------------
" >> $log
+
+ Rscript $dir/pattern_plots.r $outdir/data_${func}.txt $outdir/plot1 $outdir/plot2 $outdir/plot3 2>&1
+
echo "
info | " >> $output for gene in ${genes[@]} @@ -262,6 +267,10 @@ #echo "Download data" >> $output done +echo "||
---|---|---|
info | link | |
The complete dataset | Download | |
The SHM Overview table as a dataset | Download | |
The data used to generate the first SHM Overview plot | Download | |
The data used to generate the sexond SHM Overview plot | Download | |
The data used to generate the third SHM Overview plot | Download | |
The alignment info on the unmatched sequences | Download | |
Motif data per sequence ID | Download | |
Mutation data per sequence ID | Download |