Mercurial > repos > davidvanzessen > mutation_analysis
view gene_identification.py @ 8:3f4b4ef46c7f draft
Uploaded
author | davidvanzessen |
---|---|
date | Tue, 17 Mar 2015 09:44:25 -0400 |
parents | 71a12810eff3 |
children | 4b83265b2686 |
line wrap: on
line source
import re import argparse import time starttime= int(time.time() * 1000) parser = argparse.ArgumentParser() parser.add_argument("--input", help="The 1_Summary file from an IMGT zip file") parser.add_argument("--output", help="The annotated summary output file") args = parser.parse_args() infile = args.input #infile = "test_VH-Ca_Cg_25nt/1_Summary_test_VH-Ca_Cg_25nt_241013.txt" output = args.output #outfile = "identified.txt" dic = dict() total = 0 first = True IDIndex = 0 seqIndex = 0 with open(infile, 'r') as f: #read all sequences into a dictionary as key = ID, value = sequence for line in f: total += 1 if first: linesplt = line.split("\t") IDIndex = linesplt.index("Sequence ID") seqIndex = linesplt.index("Sequence") first = False continue linesplt = line.split("\t") ID = linesplt[IDIndex] if len(linesplt) < 28: #weird rows without a sequence dic[ID] = "" else: dic[ID] = linesplt[seqIndex] #lambda/kappa reference sequence searchstrings = {"ca": "catccccgaccagccccaaggtcttcccgctgagcctctgcagcacccagccagatgggaacgtggtcatcgcctgcctggtccagggcttcttcccccaggagccactcagtgtgacctggagcgaaag", "cg": "ctccaccaagggcccatcggtcttccccctggcaccctcctccaagagcacctctgggggcacagcggccctgggctgcctggtcaaggactacttccccgaaccggtgacggtgtcgtggaactcaggcgccctgaccagcggcgtgcacaccttcc", "cm": "gggagtgcatccgccccaacccttttccccctcgtctcctgtgagaattccc"} compiledregex = {"ca": [], "cg": [], "cm": []} #lambda/kappa reference sequence variable nucleotides ca1 = {38: 't', 39: 'g', 48: 'a', 49: 'g', 51: 'c', 68: 'a', 73: 'c'} ca2 = {38: 'g', 39: 'a', 48: 'c', 49: 'c', 51: 'a', 68: 'g', 73: 'a'} cg1 = {0: 'c', 33: 'a', 38: 'c', 44: 'a', 54: 't', 56: 'g', 58: 'g', 66: 'g', 132: 'c'} cg2 = {0: 'c', 33: 'g', 38: 'g', 44: 'g', 54: 'c', 56: 'a', 58: 'a', 66: 'g', 132: 't'} cg3 = {0: 't', 33: 'g', 38: 'g', 44: 'g', 54: 't', 56: 'g', 58: 'g', 66: 'g', 132: 'c'} cg4 = {0: 't', 33: 'g', 38: 'g', 44: 'g', 54: 'c', 56: 'a', 58: 'a', 66: 'c', 132: 'c'} #reference sequences are cut into smaller parts of 'chunklength' length, and with 'chunklength' / 2 overlap chunklength = 8 #create the chunks of the reference sequence with regular expressions for the variable nucleotides for i in range(0, len(searchstrings["ca"]) - chunklength, chunklength / 2): pos = i chunk = searchstrings["ca"][i:i+chunklength] result = "" varsInResult = 0 for c in chunk: if pos in ca1.keys(): varsInResult += 1 result += "[" + ca1[pos] + ca2[pos] + "]" else: result += c pos += 1 compiledregex["ca"].append((re.compile(result), varsInResult)) for i in range(0, len(searchstrings["cg"]) - chunklength, chunklength / 2): pos = i chunk = searchstrings["cg"][i:i+chunklength] result = "" varsInResult = 0 for c in chunk: if pos in cg1.keys(): varsInResult += 1 result += "[" + "".join(set([cg1[pos], cg2[pos], cg3[pos], cg4[pos]])) + "]" else: result += c pos += 1 compiledregex["cg"].append((re.compile(result), varsInResult)) for i in range(0, len(searchstrings["cm"]) - chunklength, chunklength / 2): compiledregex["cm"].append((re.compile(searchstrings["cm"][i:i+chunklength]), False)) def removeAndReturnMaxIndex(x): #simplifies a list comprehension m = max(x) index = x.index(m) x[index] = 0 return index start_location = dict() hits = dict() alltotal = 0 for key in compiledregex.keys(): #for ca/cg/cm regularexpressions = compiledregex[key] #get the compiled regular expressions for ID in dic.keys()[0:]: #for every ID if ID not in hits.keys(): #ensure that the dictionairy that keeps track of the hits for every gene exists hits[ID] = {"ca_hits": 0, "cg_hits": 0, "cm_hits": 0, "ca1": 0, "ca2": 0, "cg1": 0, "cg2": 0, "cg3": 0, "cg4": 0} currentIDHits = hits[ID] seq = dic[ID] lastindex = 0 start = [0] * len(seq) for i, regexp in enumerate(regularexpressions): #for every regular expression relativeStartLocation = lastindex - (chunklength / 2) * i if relativeStartLocation < 0 or relativeStartLocation >= len(seq): break regex, hasVar = regexp matches = regex.finditer(seq[lastindex:]) for match in matches: #for every match with the current regex, only uses the first hit lastindex += match.start() print ID print lastindex print chunklength print i print seq[lastindex:] print start print len(seq) print relativeStartLocation print "-------------------" start[relativeStartLocation] += 1 if hasVar: #if the regex has a variable nt in it chunkstart = chunklength / 2 * i #where in the reference does this chunk start chunkend = chunklength / 2 * i + chunklength #where in the reference does this chunk end if key == "ca": #just calculate the variable nt score for 'ca', cheaper currentIDHits["ca1"] += len([1 for x in ca1 if chunkstart <= x < chunkend and ca1[x] == seq[lastindex + x - chunkstart]]) currentIDHits["ca2"] += len([1 for x in ca2 if chunkstart <= x < chunkend and ca2[x] == seq[lastindex + x - chunkstart]]) elif key == "cg": #just calculate the variable nt score for 'cg', cheaper currentIDHits["cg1"] += len([1 for x in cg1 if chunkstart <= x < chunkend and cg1[x] == seq[lastindex + x - chunkstart]]) currentIDHits["cg2"] += len([1 for x in cg2 if chunkstart <= x < chunkend and cg2[x] == seq[lastindex + x - chunkstart]]) currentIDHits["cg3"] += len([1 for x in cg3 if chunkstart <= x < chunkend and cg3[x] == seq[lastindex + x - chunkstart]]) currentIDHits["cg4"] += len([1 for x in cg4 if chunkstart <= x < chunkend and cg4[x] == seq[lastindex + x - chunkstart]]) else: #key == "cm" #no variable regions in 'cm' pass break #this only breaks when there was a match with the regex, breaking means the 'else:' clause is skipped else: #only runs if there were no hits continue #print "found ", regex.pattern , "at", lastindex, "adding one to", (lastindex - chunklength / 2 * i), "to the start array of", ID, "gene", key, "it's now:", start[lastindex - chunklength / 2 * i] currentIDHits[key + "_hits"] += 1 start_location[ID + "_" + key] = str([(removeAndReturnMaxIndex(start) + 1) for x in range(5) if len(start) > 0 and max(start) > 1]) #start_location[ID + "_" + key] = str(start.index(max(start))) chunksInCA = len(compiledregex["ca"]) chunksInCG = len(compiledregex["cg"]) chunksInCM = len(compiledregex["cm"]) requiredChunkPercentage = 0.7 varsInCA = float(len(ca1.keys()) * 2) varsInCG = float(len(cg1.keys()) * 2) + 1 varsInCM = 0 requiredVarPercentage = 0.7 first = True with open(infile, 'r') as f: #read all sequences into a dictionary as key = ID, value = sequence with open(output, 'w') as o: for line in f: total += 1 if first: o.write(line.rstrip() + "\tbest_match\tnt_hit_percentage\tchunk_hit_percentage\tstart_locations\n") first = False continue linesplt = line.split("\t") if linesplt[2] == "No results": pass ID = linesplt[1] currentIDHits = hits[ID] possibleca = float(len(compiledregex["ca"])) possiblecg = float(len(compiledregex["cg"])) possiblecm = float(len(compiledregex["cm"])) cahits = currentIDHits["ca_hits"] cghits = currentIDHits["cg_hits"] cmhits = currentIDHits["cm_hits"] if cahits > cghits and cahits > cmhits: #its a ca gene ca1hits = currentIDHits["ca1"] ca2hits = currentIDHits["ca2"] if ca1hits > ca2hits: o.write(line.rstrip() + "\tca1\t" + str(int(ca1hits / varsInCA * 100)) + "\t" + str(int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\n") else: o.write(line.rstrip() + "\tca2\t" + str(int(ca2hits / varsInCA * 100)) + "\t" + str(int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\n") elif cghits > cahits and cghits > cmhits: #its a cg gene cg1hits = currentIDHits["cg1"] cg2hits = currentIDHits["cg2"] cg3hits = currentIDHits["cg3"] cg4hits = currentIDHits["cg4"] if cg1hits > cg2hits and cg1hits > cg3hits and cg1hits > cg4hits: #cg1 gene o.write(line.rstrip() + "\tcg1\t" + str(int(cg1hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n") elif cg2hits > cg1hits and cg2hits > cg3hits and cg2hits > cg4hits: #cg2 gene o.write(line.rstrip() + "\tcg2\t" + str(int(cg2hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n") elif cg3hits > cg1hits and cg3hits > cg2hits and cg3hits > cg4hits: #cg3 gene o.write(line.rstrip() + "\tcg3\t" + str(int(cg3hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n") else: #cg4 gene o.write(line.rstrip() + "\tcg4\t" + str(int(cg4hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n") else: #its a cm gene o.write(line.rstrip() + "\tcm\t0\t" + str(int(cmhits / possiblecm * 100)) + "\t" + start_location[ID + "_cg"] + "\n") print "Time: %i" % (int(time.time() * 1000) - starttime)