Mercurial > repos > davidvanzessen > mutation_analysis
comparison mutation_analysis.r @ 22:d84c9791d8c4 draft
Uploaded
| author | davidvanzessen |
|---|---|
| date | Tue, 07 Apr 2015 03:52:34 -0400 |
| parents | cb7c65e3e43f |
| children | 28b8d980db22 |
comparison
equal
deleted
inserted
replaced
| 21:c9f9623f1f76 | 22:d84c9791d8c4 |
|---|---|
| 1 args <- commandArgs(trailingOnly = TRUE) | 1 args <- commandArgs(trailingOnly = TRUE) |
| 2 | 2 |
| 3 input = args[1] | 3 input = args[1] |
| 4 genes = unlist(strsplit(args[2], ",")) | 4 genes = unlist(strsplit(args[2], ",")) |
| 5 outputdir = args[3] | 5 outputdir = args[3] |
| 6 print(args[4]) | |
| 7 include_fr1 = ifelse(args[4] == "yes", T, F) | |
| 6 setwd(outputdir) | 8 setwd(outputdir) |
| 7 | 9 |
| 8 dat = read.table(input, header=T, sep="\t", fill=T, stringsAsFactors=F) | 10 dat = read.table(input, header=T, sep="\t", fill=T, stringsAsFactors=F) |
| 9 | 11 |
| 10 if(length(dat$Sequence.ID) == 0){ | 12 if(length(dat$Sequence.ID) == 0){ |
| 100 #dat[dat[,col] == "",] = "0" | 102 #dat[dat[,col] == "",] = "0" |
| 101 dat[,col] = as.numeric(dat[,col]) | 103 dat[,col] = as.numeric(dat[,col]) |
| 102 dat[is.na(dat[,col]),] = 0 | 104 dat[is.na(dat[,col]),] = 0 |
| 103 } | 105 } |
| 104 | 106 |
| 105 dat$VRegionMutations = dat$CDR1.IMGT.Nb.of.mutations + | 107 regions = c("FR1", "CDR1", "FR2", "CDR2", "FR3") |
| 106 dat$FR2.IMGT.Nb.of.mutations + | 108 if(!include_fr1){ |
| 107 dat$CDR2.IMGT.Nb.of.mutations + | 109 regions = c("CDR1", "FR2", "CDR2", "FR3") |
| 108 dat$FR3.IMGT.Nb.of.mutations | 110 } |
| 109 | 111 |
| 110 dat$VRegionNucleotides = dat$CDR1.IMGT.Nb.of.nucleotides + | 112 sum_by_row = function(x, columns) { sum(as.numeric(x[columns]), na.rm=T) } |
| 111 dat$FR2.IMGT.Nb.of.nucleotides + | 113 |
| 112 dat$CDR2.IMGT.Nb.of.nucleotides + | 114 VRegionMutations_columns = paste(regions, ".IMGT.Nb.of.mutations", sep="") |
| 113 dat$FR3.IMGT.Nb.of.nucleotides | 115 dat$VRegionMutations = apply(dat, FUN=sum_by_row, 1, columns=VRegionMutations_columns) |
| 114 | 116 |
| 115 dat$transitionMutations = dat$CDR1.IMGT.a.g + | 117 VRegionNucleotides_columns = paste(regions, ".IMGT.Nb.of.nucleotides", sep="") |
| 116 dat$CDR1.IMGT.g.a + | 118 dat$VRegionNucleotides = apply(dat, FUN=sum_by_row, 1, columns=VRegionNucleotides_columns) |
| 117 dat$CDR1.IMGT.c.t + | 119 |
| 118 dat$CDR1.IMGT.t.c + | 120 transitionMutations_columns = paste(rep(regions, each=4), c(".IMGT.a.g", ".IMGT.g.a", ".IMGT.c.t", ".IMGT.t.c"), sep="") |
| 119 dat$FR2.IMGT.a.g + | 121 dat$transitionMutations = apply(dat, FUN=sum_by_row, 1, columns=transitionMutations_columns) |
| 120 dat$FR2.IMGT.g.a + | 122 |
| 121 dat$FR2.IMGT.c.t + | 123 transversionMutations_columns = paste(rep(regions, each=8), c(".IMGT.a.c",".IMGT.c.a",".IMGT.a.t",".IMGT.t.a",".IMGT.g.c",".IMGT.c.g",".IMGT.g.t",".IMGT.t.g"), sep="") |
| 122 dat$FR2.IMGT.t.c + | 124 dat$transversionMutations = apply(dat, FUN=sum_by_row, 1, columns=transversionMutations_columns) |
| 123 dat$CDR2.IMGT.a.g + | 125 |
| 124 dat$CDR2.IMGT.g.a + | 126 |
| 125 dat$CDR2.IMGT.c.t + | 127 transitionMutationsAtGC_columns = paste(rep(regions, each=2), c(".IMGT.g.a",".IMGT.c.t"), sep="") |
| 126 dat$CDR2.IMGT.t.c + | 128 dat$transitionMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtGC_columns) |
| 127 dat$FR3.IMGT.a.g + | 129 |
| 128 dat$FR3.IMGT.g.a + | 130 totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.g.a",".IMGT.c.t",".IMGT.c.a",".IMGT.g.c",".IMGT.c.g",".IMGT.g.t"), sep="") |
| 129 dat$FR3.IMGT.c.t + | 131 dat$totalMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtGC_columns) |
| 130 dat$FR3.IMGT.t.c | |
| 131 | |
| 132 dat$transversionMutations = dat$CDR1.IMGT.a.c + | |
| 133 dat$CDR1.IMGT.c.a + | |
| 134 dat$CDR1.IMGT.a.t + | |
| 135 dat$CDR1.IMGT.t.a + | |
| 136 dat$CDR1.IMGT.g.c + | |
| 137 dat$CDR1.IMGT.c.g + | |
| 138 dat$CDR1.IMGT.g.t + | |
| 139 dat$CDR1.IMGT.t.g + | |
| 140 dat$FR2.IMGT.a.c + | |
| 141 dat$FR2.IMGT.c.a + | |
| 142 dat$FR2.IMGT.a.t + | |
| 143 dat$FR2.IMGT.t.a + | |
| 144 dat$FR2.IMGT.g.c + | |
| 145 dat$FR2.IMGT.c.g + | |
| 146 dat$FR2.IMGT.g.t + | |
| 147 dat$FR2.IMGT.t.g + | |
| 148 dat$CDR2.IMGT.a.c + | |
| 149 dat$CDR2.IMGT.c.a + | |
| 150 dat$CDR2.IMGT.a.t + | |
| 151 dat$CDR2.IMGT.t.a + | |
| 152 dat$CDR2.IMGT.g.c + | |
| 153 dat$CDR2.IMGT.c.g + | |
| 154 dat$CDR2.IMGT.g.t + | |
| 155 dat$CDR2.IMGT.t.g + | |
| 156 dat$FR3.IMGT.a.c + | |
| 157 dat$FR3.IMGT.c.a + | |
| 158 dat$FR3.IMGT.a.t + | |
| 159 dat$FR3.IMGT.t.a + | |
| 160 dat$FR3.IMGT.g.c + | |
| 161 dat$FR3.IMGT.c.g + | |
| 162 dat$FR3.IMGT.g.t + | |
| 163 dat$FR3.IMGT.t.g | |
| 164 | |
| 165 | |
| 166 dat$transitionMutationsAtGC = dat$CDR1.IMGT.g.a + | |
| 167 dat$CDR1.IMGT.c.t + | |
| 168 dat$FR2.IMGT.g.a + | |
| 169 dat$FR2.IMGT.c.t + | |
| 170 dat$CDR2.IMGT.g.a + | |
| 171 dat$CDR2.IMGT.c.t + | |
| 172 dat$FR3.IMGT.g.a + | |
| 173 dat$FR3.IMGT.c.t | |
| 174 | |
| 175 dat$totalMutationsAtGC = dat$CDR1.IMGT.g.a + | |
| 176 dat$CDR1.IMGT.c.t + | |
| 177 dat$CDR1.IMGT.c.a + | |
| 178 dat$CDR1.IMGT.g.c + | |
| 179 dat$CDR1.IMGT.c.g + | |
| 180 dat$CDR1.IMGT.g.t + | |
| 181 dat$FR2.IMGT.g.a + | |
| 182 dat$FR2.IMGT.c.t + | |
| 183 dat$FR2.IMGT.c.a + | |
| 184 dat$FR2.IMGT.g.c + | |
| 185 dat$FR2.IMGT.c.g + | |
| 186 dat$FR2.IMGT.g.t + | |
| 187 dat$CDR2.IMGT.g.a + | |
| 188 dat$CDR2.IMGT.c.t + | |
| 189 dat$CDR2.IMGT.c.a + | |
| 190 dat$CDR2.IMGT.g.c + | |
| 191 dat$CDR2.IMGT.c.g + | |
| 192 dat$CDR2.IMGT.g.t + | |
| 193 dat$FR3.IMGT.g.a + | |
| 194 dat$FR3.IMGT.c.t + | |
| 195 dat$FR3.IMGT.c.a + | |
| 196 dat$FR3.IMGT.g.c + | |
| 197 dat$FR3.IMGT.c.g + | |
| 198 dat$FR3.IMGT.g.t | |
| 199 | 132 |
| 200 | 133 |
| 201 | 134 |
| 202 setwd(outputdir) | 135 setwd(outputdir) |
| 203 | 136 |
| 137 nts = c("a", "t", "g", "c") | |
| 138 zeros=rep(0, 4) | |
| 204 matrx = matrix(data = 0, ncol=((length(genes) + 1) * 3),nrow=5) | 139 matrx = matrix(data = 0, ncol=((length(genes) + 1) * 3),nrow=5) |
| 205 for(i in 1:length(genes)){ | 140 for(i in 1:length(genes)){ |
| 206 gene = genes[i] | 141 gene = genes[i] |
| 207 tmp = dat[grepl(paste(".*", gene, ".*", sep=""), dat$best_match),] | 142 tmp = dat[grepl(paste(".*", gene, ".*", sep=""), dat$best_match),] |
| 208 if(gene == "."){ | 143 if(gene == "."){ |
| 209 tmp = dat | 144 tmp = dat |
| 210 } | |
| 211 if(length(tmp) == 0){ | |
| 212 cat("0", file=paste(gene, "_value.txt" ,sep="")) | |
| 213 next | |
| 214 } | 145 } |
| 215 j = i - 1 | 146 j = i - 1 |
| 216 x = (j * 3) + 1 | 147 x = (j * 3) + 1 |
| 217 y = (j * 3) + 2 | 148 y = (j * 3) + 2 |
| 218 z = (j * 3) + 3 | 149 z = (j * 3) + 3 |
| 230 matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1) | 161 matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1) |
| 231 matrx[5,x] = sum(tmp$totalMutationsAtGC) | 162 matrx[5,x] = sum(tmp$totalMutationsAtGC) |
| 232 matrx[5,y] = sum(tmp$VRegionMutations) | 163 matrx[5,y] = sum(tmp$VRegionMutations) |
| 233 matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1) | 164 matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1) |
| 234 | 165 |
| 235 transitionTable = data.frame(A=1:4,C=1:4,G=1:4,T=1:4) | 166 transitionTable = data.frame(A=zeros,C=zeros,G=zeros,T=zeros) |
| 236 row.names(transitionTable) = c("A", "C", "G", "T") | 167 row.names(transitionTable) = c("A", "C", "G", "T") |
| 237 transitionTable["A","A"] = NA | 168 transitionTable["A","A"] = NA |
| 238 transitionTable["C","C"] = NA | 169 transitionTable["C","C"] = NA |
| 239 transitionTable["G","G"] = NA | 170 transitionTable["G","G"] = NA |
| 240 transitionTable["T","T"] = NA | 171 transitionTable["T","T"] = NA |
| 241 nts = c("a", "c", "g", "t") | 172 |
| 173 if(nrow(tmp) > 0){ | |
| 174 for(nt1 in nts){ | |
| 175 for(nt2 in nts){ | |
| 176 if(nt1 == nt2){ | |
| 177 next | |
| 178 } | |
| 179 NT1 = LETTERS[letters == nt1] | |
| 180 NT2 = LETTERS[letters == nt2] | |
| 181 FR1 = paste("FR1.IMGT.", nt1, ".", nt2, sep="") | |
| 182 CDR1 = paste("CDR1.IMGT.", nt1, ".", nt2, sep="") | |
| 183 FR2 = paste("FR2.IMGT.", nt1, ".", nt2, sep="") | |
| 184 CDR2 = paste("CDR2.IMGT.", nt1, ".", nt2, sep="") | |
| 185 FR3 = paste("FR3.IMGT.", nt1, ".", nt2, sep="") | |
| 186 if(include_fr1){ | |
| 187 transitionTable[NT1,NT2] = sum(tmp[,c(FR1, CDR1, FR2, CDR2, FR3)]) | |
| 188 } else { | |
| 189 transitionTable[NT1,NT2] = sum(tmp[,c(CDR1, FR2, CDR2, FR3)]) | |
| 190 } | |
| 191 } | |
| 192 } | |
| 193 } | |
| 242 | 194 |
| 243 | 195 |
| 244 for(nt1 in nts){ | |
| 245 for(nt2 in nts){ | |
| 246 if(nt1 == nt2){ | |
| 247 next | |
| 248 } | |
| 249 NT1 = LETTERS[letters == nt1] | |
| 250 NT2 = LETTERS[letters == nt2] | |
| 251 FR1 = 0 #paste("FR1.IMGT.", nt1, ".", nt2, sep="") | |
| 252 CDR1 = paste("CDR1.IMGT.", nt1, ".", nt2, sep="") | |
| 253 FR2 = paste("FR2.IMGT.", nt1, ".", nt2, sep="") | |
| 254 CDR2 = paste("CDR2.IMGT.", nt1, ".", nt2, sep="") | |
| 255 FR3 = paste("FR3.IMGT.", nt1, ".", nt2, sep="") | |
| 256 transitionTable[NT1,NT2] = sum( tmp[,CDR1] + | |
| 257 tmp[,FR2] + | |
| 258 tmp[,CDR2] + | |
| 259 tmp[,FR3]) | |
| 260 } | |
| 261 } | |
| 262 write.table(x=transitionTable, file=paste("transitions_", gene ,".txt", sep=""), sep=",",quote=F,row.names=T,col.names=NA) | 196 write.table(x=transitionTable, file=paste("transitions_", gene ,".txt", sep=""), sep=",",quote=F,row.names=T,col.names=NA) |
| 263 write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file=paste("matched_", gene ,".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T) | 197 write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file=paste("matched_", gene ,".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T) |
| 264 | 198 |
| 265 cat(matrx[1,x], file=paste(gene, "_value.txt" ,sep="")) | 199 cat(matrx[1,x], file=paste(gene, "_value.txt" ,sep="")) |
| 266 cat(length(tmp$Sequence.ID), file=paste(gene, "_n.txt" ,sep="")) | 200 cat(length(tmp$Sequence.ID), file=paste(gene, "_n.txt" ,sep="")) |
| 292 row.names(transitionTable) = c("A", "C", "G", "T") | 226 row.names(transitionTable) = c("A", "C", "G", "T") |
| 293 transitionTable["A","A"] = NA | 227 transitionTable["A","A"] = NA |
| 294 transitionTable["C","C"] = NA | 228 transitionTable["C","C"] = NA |
| 295 transitionTable["G","G"] = NA | 229 transitionTable["G","G"] = NA |
| 296 transitionTable["T","T"] = NA | 230 transitionTable["T","T"] = NA |
| 297 nts = c("a", "c", "g", "t") | |
| 298 | 231 |
| 299 | 232 |
| 300 for(nt1 in nts){ | 233 for(nt1 in nts){ |
| 301 for(nt2 in nts){ | 234 for(nt2 in nts){ |
| 302 if(nt1 == nt2){ | 235 if(nt1 == nt2){ |
| 307 FR1 = paste("FR1.IMGT.", nt1, ".", nt2, sep="") | 240 FR1 = paste("FR1.IMGT.", nt1, ".", nt2, sep="") |
| 308 CDR1 = paste("CDR1.IMGT.", nt1, ".", nt2, sep="") | 241 CDR1 = paste("CDR1.IMGT.", nt1, ".", nt2, sep="") |
| 309 FR2 = paste("FR2.IMGT.", nt1, ".", nt2, sep="") | 242 FR2 = paste("FR2.IMGT.", nt1, ".", nt2, sep="") |
| 310 CDR2 = paste("CDR2.IMGT.", nt1, ".", nt2, sep="") | 243 CDR2 = paste("CDR2.IMGT.", nt1, ".", nt2, sep="") |
| 311 FR3 = paste("FR3.IMGT.", nt1, ".", nt2, sep="") | 244 FR3 = paste("FR3.IMGT.", nt1, ".", nt2, sep="") |
| 312 transitionTable[NT1,NT2] = sum( tmp[,CDR1] + | 245 if(include_fr1){ |
| 313 tmp[,FR2] + | 246 transitionTable[NT1,NT2] = sum(tmp[,c(FR1, CDR1, FR2, CDR2, FR3)]) |
| 314 tmp[,CDR2] + | 247 } else { |
| 315 tmp[,FR3]) | 248 transitionTable[NT1,NT2] = sum(tmp[,c(CDR1, FR2, CDR2, FR3)]) |
| 249 } | |
| 316 } | 250 } |
| 317 } | 251 } |
| 318 write.table(x=transitionTable, file="transitions.txt", sep=",",quote=F,row.names=T,col.names=NA) | 252 write.table(x=transitionTable, file="transitions.txt", sep=",",quote=F,row.names=T,col.names=NA) |
| 319 write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file="matched_all.txt", sep="\t",quote=F,row.names=F,col.names=T) | 253 write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file="matched_all.txt", sep="\t",quote=F,row.names=F,col.names=T) |
| 320 cat(matrx[1,x], file="total_value.txt") | 254 cat(matrx[1,x], file="total_value.txt") |
| 380 | 314 |
| 381 png(filename="cg.png") | 315 png(filename="cg.png") |
| 382 print(pc) | 316 print(pc) |
| 383 dev.off() | 317 dev.off() |
| 384 } | 318 } |
| 319 | |
| 320 dat$percentage_mutations = round(dat$VRegionMutations / dat$VRegionNucleotides * 100, 2) | |
| 321 | |
| 322 p = ggplot(dat, aes(best_match, percentage_mutations))# + scale_y_log10(breaks=scales,labels=scales) | |
| 323 p = p + geom_point(aes(colour=best_match), position="jitter") | |
| 324 p = p + xlab("Subclass") + ylab("Frequency") + ggtitle("Frequency scatter plot") | |
| 325 | |
| 326 png(filename="scatter.png") | |
| 327 print(p) | |
| 328 dev.off() | |
| 329 | |
| 330 | |
| 331 | |
| 332 | |
| 333 | |
| 334 | |
| 335 | |
| 336 | |
| 337 | |
| 338 | |
| 339 | |
| 340 | |
| 341 | |
| 342 | |
| 343 | |
| 344 | |
| 345 | |
| 346 | |
| 347 | |
| 348 | |
| 349 | |
| 350 | |
| 351 | |
| 352 | |
| 353 | |
| 354 | |
| 355 | |
| 356 | |
| 357 | |
| 358 | |
| 359 | |
| 360 |
