Mercurial > repos > davidvanzessen > mutation_analysis
comparison mutation_analysis.r @ 110:ade5cf6fd2dc draft
Uploaded
author | davidvanzessen |
---|---|
date | Tue, 02 Aug 2016 08:30:23 -0400 |
parents | 5ffbf40cdd4b |
children | e7b550d52eb7 |
comparison
equal
deleted
inserted
replaced
109:0096cd454380 | 110:ade5cf6fd2dc |
---|---|
305 } | 305 } |
306 | 306 |
307 write.table(x=result, file=paste("mutations_", fname, ".txt", sep=""), sep=",",quote=F,row.names=T,col.names=F) | 307 write.table(x=result, file=paste("mutations_", fname, ".txt", sep=""), sep=",",quote=F,row.names=T,col.names=F) |
308 } | 308 } |
309 | 309 |
310 sum.table = read.table("mutations_sum.txt", sep=",", header=F) | |
311 median.table = read.table("mutations_median.txt", sep=",", header=F) | |
312 | |
313 #sum.table["Median of Number of Mutations (%)",] = median.table[1,] | |
314 | |
315 new.table = sum.table[1,] | |
316 new.table[2,] = median.table[1,] | |
317 new.table[3:12,] = sum.table[2:11,] | |
318 new.table[,1] = as.character(new.table[,1]) | |
319 new.table[2,1] = "Median of Number of Mutations (%)" | |
320 | |
321 #sum.table = sum.table[c("Number of Mutations (%)", "Median of Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)", "Transitions at A T (%)", "Targeting of A T (%)", "FR R/S (ratio)", "CDR R/S (ratio)", "nt in FR", "nt in CDR"),] | |
322 | |
323 write.table(x=new.table, file="mutations_sum.txt", sep=",",quote=F,row.names=F,col.names=F) | |
324 | |
325 | |
310 | 326 |
311 if (!("ggplot2" %in% rownames(installed.packages()))) { | 327 if (!("ggplot2" %in% rownames(installed.packages()))) { |
312 install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") | 328 install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") |
313 } | 329 } |
314 | 330 |
315 genesForPlot = gsub("[0-9]", "", dat$best_match) | 331 dat = dat[!grepl("^unmatched", dat$best_match),] |
316 genesForPlot = data.frame(table(genesForPlot)) | |
317 colnames(genesForPlot) = c("Gene","Freq") | |
318 genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq) | |
319 write.table(genesForPlot, "all.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
320 | |
321 | |
322 pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=label)) | |
323 pc = pc + geom_bar(width = 1, stat = "identity") | |
324 pc = pc + coord_polar(theta="y") | |
325 pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("Classes", "( n =", sum(genesForPlot$Freq), ")")) | |
326 | |
327 png(filename="all.png") | |
328 pc | |
329 dev.off() | |
330 | 332 |
331 #blegh | 333 #blegh |
332 genesForPlot = dat[grepl("ca", dat$best_match),]$best_match | 334 genesForPlot = dat[grepl("ca", dat$best_match),]$best_match |
333 if(length(genesForPlot) > 0){ | 335 if(length(genesForPlot) > 0){ |
334 genesForPlot = data.frame(table(genesForPlot)) | 336 genesForPlot = data.frame(table(genesForPlot)) |
375 | 377 |
376 write.table(dat[,c("Sequence.ID", "best_match", "VRegionMutations", "VRegionNucleotides", "percentage_mutations")], "scatter.txt", sep="\t",quote=F,row.names=F,col.names=T) | 378 write.table(dat[,c("Sequence.ID", "best_match", "VRegionMutations", "VRegionNucleotides", "percentage_mutations")], "scatter.txt", sep="\t",quote=F,row.names=F,col.names=T) |
377 | 379 |
378 write.table(dat, input, sep="\t",quote=F,row.names=F,col.names=T) | 380 write.table(dat, input, sep="\t",quote=F,row.names=F,col.names=T) |
379 | 381 |
380 | |
381 | |
382 | |
383 | |
384 | |
385 dat$best_match_class = substr(dat$best_match, 0, 2) | 382 dat$best_match_class = substr(dat$best_match, 0, 2) |
386 freq_labels = c("0", "0-2", "2-5", "5-10", "10-15", "15-20", "20") | 383 freq_labels = c("0", "0-2", "2-5", "5-10", "10-15", "15-20", "20") |
387 dat$frequency_bins = cut(dat$percentage_mutations, breaks=c(-Inf, 0, 2,5,10,15,20, Inf), labels=freq_labels) | 384 dat$frequency_bins = cut(dat$percentage_mutations, breaks=c(-Inf, 0, 2,5,10,15,20, Inf), labels=freq_labels) |
388 | 385 |
389 frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match_class", "frequency_bins")]) | 386 frequency_bins_data = data.frame(data.table(dat)[, list(frequency_count=.N), by=c("best_match_class", "frequency_bins")]) |