Mercurial > repos > davidvanzessen > imgt_loader_igg
comparison imgtconvert.py @ 7:04e72fc8b2c4 draft default tip
Uploaded
| author | davidvanzessen |
|---|---|
| date | Fri, 05 Sep 2014 04:21:48 -0400 |
| parents | 5b030e48b308 |
| children |
comparison
equal
deleted
inserted
replaced
| 6:5b030e48b308 | 7:04e72fc8b2c4 |
|---|---|
| 1 import pandas as pd | |
| 2 try: | |
| 3 pd.options.mode.chained_assignment = None # default='warn' | |
| 4 except: | |
| 5 pass | |
| 6 import re | |
| 7 import argparse | |
| 8 import os | |
| 9 | |
| 10 def stop_err( msg, ret=1 ): | |
| 11 sys.stderr.write( msg ) | |
| 12 sys.exit( ret ) | |
| 13 | |
| 14 #docs.python.org/dev/library/argparse.html | |
| 15 parser = argparse.ArgumentParser() | |
| 16 parser.add_argument("--input", help="Input folder with files") | |
| 17 parser.add_argument("--output", help="Output file") | |
| 18 | |
| 19 args = parser.parse_args() | |
| 20 | |
| 21 old_summary_columns = [u'Sequence ID', u'JUNCTION frame', u'V-GENE and allele', u'D-GENE and allele', u'J-GENE and allele', u'CDR1-IMGT length', u'CDR2-IMGT length', u'CDR3-IMGT length', u'Orientation'] | |
| 22 old_sequence_columns = [u'CDR1-IMGT', u'CDR2-IMGT', u'CDR3-IMGT'] | |
| 23 old_junction_columns = [u'JUNCTION'] | |
| 24 | |
| 25 added_summary_columns = [u'Functionality', u'V-REGION identity %', u'V-REGION identity nt', u'D-REGION reading frame', u'AA JUNCTION', u'Functionality comment', u'Sequence'] | |
| 26 added_sequence_columns = [u'FR1-IMGT', u'FR2-IMGT', u'FR3-IMGT', u'CDR3-IMGT', u'JUNCTION', u'J-REGION', u'FR4-IMGT'] | |
| 27 added_junction_columns = [u"P3'V-nt nb", u'N1-REGION-nt nb', u"P5'D-nt nb", u"P3'D-nt nb", u'N2-REGION-nt nb', u"P5'J-nt nb", u"3'V-REGION trimmed-nt nb", u"5'D-REGION trimmed-nt nb", u"3'D-REGION trimmed-nt nb", u"5'J-REGION trimmed-nt nb"] | |
| 28 | |
| 29 inputFolder = args.input | |
| 30 | |
| 31 dirContents = os.listdir(inputFolder) | |
| 32 if len(dirContents) == 1: | |
| 33 inputFolder = os.path.join(inputFolder, dirContents[0]) | |
| 34 if os.path.isdir(inputFolder): | |
| 35 dirContents = os.listdir(inputFolder) | |
| 36 files = sorted([os.path.join(inputFolder, f) for f in dirContents if os.path.isfile(os.path.join(inputFolder, f))]) | |
| 37 | |
| 38 if len(files) % 3 is not 0: | |
| 39 stop_err("Files in zip not a multiple of 3, it should contain the all the 1_, 5_ and 6_ files for a sample") | |
| 40 import sys | |
| 41 sys.exit() | |
| 42 | |
| 43 triplets = [] | |
| 44 step = len(files) / 3 | |
| 45 for i in range(0, step): | |
| 46 triplets.append((files[i], files[i + step], files[i + step + step])) | |
| 47 | |
| 48 outFile = args.output | |
| 49 | |
| 50 #fSummary = pd.read_csv(triplets[0][0], sep="\t", low_memory=False) | |
| 51 fSummary = pd.read_csv(triplets[0][0], sep="\t") | |
| 52 #fSequence = pd.read_csv(triplets[0][1], sep="\t", low_memory=False) | |
| 53 fSequence = pd.read_csv(triplets[0][1], sep="\t") | |
| 54 #fJunction = pd.read_csv(triplets[0][2], sep="\t", low_memory=False) | |
| 55 fJunction = pd.read_csv(triplets[0][2], sep="\t") | |
| 56 tmp = fSummary[["Sequence ID", "JUNCTION frame", "V-GENE and allele", "D-GENE and allele", "J-GENE and allele"]] | |
| 57 | |
| 58 tmp["CDR1 Seq"] = fSequence["CDR1-IMGT"] | |
| 59 tmp["CDR1 Length"] = fSummary["CDR1-IMGT length"] | |
| 60 | |
| 61 tmp["CDR2 Seq"] = fSequence["CDR2-IMGT"] | |
| 62 tmp["CDR2 Length"] = fSummary["CDR2-IMGT length"] | |
| 63 | |
| 64 tmp["CDR3 Seq"] = fSequence["CDR3-IMGT"] | |
| 65 tmp["CDR3 Length"] = fSummary["CDR3-IMGT length"] | |
| 66 | |
| 67 tmp["CDR3 Seq DNA"] = fJunction["JUNCTION"] | |
| 68 tmp["CDR3 Length DNA"] = '1' | |
| 69 tmp["Strand"] = fSummary["Orientation"] | |
| 70 tmp["CDR3 Found How"] = 'a' | |
| 71 | |
| 72 for col in added_summary_columns: | |
| 73 tmp[col] = fSummary[col] | |
| 74 | |
| 75 for col in added_sequence_columns: | |
| 76 tmp[col] = fSequence[col] | |
| 77 | |
| 78 for col in added_junction_columns: | |
| 79 tmp[col] = fJunction[col] | |
| 80 | |
| 81 outFrame = tmp | |
| 82 | |
| 83 | |
| 84 | |
| 85 for triple in triplets[1:]: | |
| 86 fSummary = pd.read_csv(triple[0], sep="\t") | |
| 87 fSequence = pd.read_csv(triple[1], sep="\t") | |
| 88 fJunction = pd.read_csv(triple[2], sep="\t") | |
| 89 | |
| 90 tmp = fSummary[["Sequence ID", "JUNCTION frame", "V-GENE and allele", "D-GENE and allele", "J-GENE and allele"]] | |
| 91 | |
| 92 tmp["CDR1 Seq"] = fSequence["CDR1-IMGT"] | |
| 93 tmp["CDR1 Length"] = fSummary["CDR1-IMGT length"] | |
| 94 | |
| 95 tmp["CDR2 Seq"] = fSequence["CDR2-IMGT"] | |
| 96 tmp["CDR2 Length"] = fSummary["CDR2-IMGT length"] | |
| 97 | |
| 98 tmp["CDR3 Seq"] = fSequence["CDR3-IMGT"] | |
| 99 tmp["CDR3 Length"] = fSummary["CDR3-IMGT length"] | |
| 100 | |
| 101 tmp["CDR3 Seq DNA"] = fJunction["JUNCTION"] | |
| 102 tmp["CDR3 Length DNA"] = '1' | |
| 103 tmp["Strand"] = fSummary["Orientation"] | |
| 104 tmp["CDR3 Found How"] = 'a' | |
| 105 | |
| 106 for col in added_summary_columns: | |
| 107 tmp[col] = fSummary[col] | |
| 108 | |
| 109 for col in added_sequence_columns: | |
| 110 tmp[col] = fSequence[col] | |
| 111 | |
| 112 for col in added_junction_columns: | |
| 113 tmp[col] = fJunction[col] | |
| 114 | |
| 115 outFrame = outFrame.append(tmp) | |
| 116 | |
| 117 | |
| 118 outFrame.columns = [u'ID', u'VDJ Frame', u'Top V Gene', u'Top D Gene', u'Top J Gene', u'CDR1 Seq', u'CDR1 Length', u'CDR2 Seq', u'CDR2 Length', u'CDR3 Seq', u'CDR3 Length', u'CDR3 Seq DNA', u'CDR3 Length DNA', u'Strand', u'CDR3 Found How', u'Functionality', 'V-REGION identity %', 'V-REGION identity nt', 'D-REGION reading frame', 'AA JUNCTION', 'Functionality comment', 'Sequence', 'FR1-IMGT', 'FR2-IMGT', 'FR3-IMGT', 'CDR3-IMGT', 'JUNCTION', 'J-REGION', 'FR4-IMGT', 'P3V-nt nb', 'N1-REGION-nt nb', 'P5D-nt nb', 'P3D-nt nb', 'N2-REGION-nt nb', 'P5J-nt nb', '3V-REGION trimmed-nt nb', '5D-REGION trimmed-nt nb', '3D-REGION trimmed-nt nb', '5J-REGION trimmed-nt nb'] | |
| 119 | |
| 120 """ | |
| 121 IGHV[0-9]-[0-9ab]+-?[0-9]?D? | |
| 122 TRBV[0-9]{1,2}-?[0-9]?-?[123]? | |
| 123 IGKV[0-3]D?-[0-9]{1,2} | |
| 124 IGLV[0-9]-[0-9]{1,2} | |
| 125 TRAV[0-9]{1,2}(-[1-46])?(/DV[45678])? | |
| 126 TRGV[234589] | |
| 127 TRDV[1-3] | |
| 128 | |
| 129 IGHD[0-9]-[0-9ab]+ | |
| 130 TRBD[12] | |
| 131 TRDD[1-3] | |
| 132 | |
| 133 IGHJ[1-6] | |
| 134 TRBJ[12]-[1-7] | |
| 135 IGKJ[1-5] | |
| 136 IGLJ[12367] | |
| 137 TRAJ[0-9]{1,2} | |
| 138 TRGJP?[12] | |
| 139 TRDJ[1-4] | |
| 140 """ | |
| 141 | |
| 142 vPattern = [r"(IGHV[0-9]-[0-9ab]+-?[0-9]?D?)", | |
| 143 r"(TRBV[0-9]{1,2}-?[0-9]?-?[123]?)", | |
| 144 r"(IGKV[0-3]D?-[0-9]{1,2})", | |
| 145 r"(IGLV[0-9]-[0-9]{1,2})", | |
| 146 r"(TRAV[0-9]{1,2}(-[1-46])?(/DV[45678])?)", | |
| 147 r"(TRGV[234589])", | |
| 148 r"(TRDV[1-3])"] | |
| 149 | |
| 150 dPattern = [r"(IGHD[0-9]-[0-9ab]+)", | |
| 151 r"(TRBD[12])", | |
| 152 r"(TRDD[1-3])"] | |
| 153 | |
| 154 jPattern = [r"(IGHJ[1-6])", | |
| 155 r"(TRBJ[12]-[1-7])", | |
| 156 r"(IGKJ[1-5])", | |
| 157 r"(IGLJ[12367])", | |
| 158 r"(TRAJ[0-9]{1,2})", | |
| 159 r"(TRGJP?[12])", | |
| 160 r"(TRDJ[1-4])"] | |
| 161 | |
| 162 vPattern = re.compile(r"|".join(vPattern)) | |
| 163 | |
| 164 dPattern = re.compile(r"|".join(dPattern)) | |
| 165 | |
| 166 jPattern = re.compile(r"|".join(jPattern)) | |
| 167 | |
| 168 | |
| 169 def filterGenes(s, pattern): | |
| 170 if type(s) is not str: | |
| 171 return "NA" | |
| 172 res = pattern.search(s) | |
| 173 if res: | |
| 174 return res.group(0) | |
| 175 return "NA" | |
| 176 | |
| 177 | |
| 178 | |
| 179 outFrame["Top V Gene"] = outFrame["Top V Gene"].apply(lambda x: filterGenes(x, vPattern)) | |
| 180 outFrame["Top D Gene"] = outFrame["Top D Gene"].apply(lambda x: filterGenes(x, dPattern)) | |
| 181 outFrame["Top J Gene"] = outFrame["Top J Gene"].apply(lambda x: filterGenes(x, jPattern)) | |
| 182 | |
| 183 print outFrame | |
| 184 | |
| 185 tmp = outFrame["VDJ Frame"] | |
| 186 tmp = tmp.replace("in-frame", "In-frame") | |
| 187 tmp = tmp.replace("null", "Out-of-frame") | |
| 188 tmp = tmp.replace("out-of-frame", "Out-of-frame") | |
| 189 outFrame["VDJ Frame"] = tmp | |
| 190 outFrame["CDR3 Length DNA"] = outFrame["CDR3 Seq DNA"].map(str).map(len) | |
| 191 safeLength = lambda x: len(x) if type(x) == str else 0 | |
| 192 outFrame = outFrame[(outFrame["CDR3 Seq DNA"].map(safeLength) > 0) & (outFrame["Top V Gene"] != "NA") & (outFrame["Top J Gene"] != "NA")] #filter out weird rows? | |
| 193 #outFrame = outFrame[(outFrame["CDR3 Seq DNA"].map(safeLength) > 0) & (outFrame["Top V Gene"] != "NA") & (outFrame["Top D Gene"] != "NA") & (outFrame["Top J Gene"] != "NA")] #filter out weird rows? | |
| 194 outFrame.to_csv(outFile, sep="\t", index=False, index_label="index") |
