Mercurial > repos > davidvanzessen > complete_immunerepertoire_igg
comparison imgtconvert.py @ 0:7d97fa9a0423 draft
Uploaded
author | davidvanzessen |
---|---|
date | Fri, 09 May 2014 09:35:32 -0400 |
parents | |
children | 24d5d9120d93 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:7d97fa9a0423 |
---|---|
1 import pandas as pd | |
2 try: | |
3 pd.options.mode.chained_assignment = None # default='warn' | |
4 except: | |
5 pass | |
6 import re | |
7 import argparse | |
8 import os | |
9 | |
10 def stop_err( msg, ret=1 ): | |
11 sys.stderr.write( msg ) | |
12 sys.exit( ret ) | |
13 | |
14 #docs.python.org/dev/library/argparse.html | |
15 parser = argparse.ArgumentParser() | |
16 parser.add_argument("--input", help="Input folder with files") | |
17 parser.add_argument("--output", help="Output file") | |
18 | |
19 args = parser.parse_args() | |
20 | |
21 old_summary_columns = [u'Sequence ID', u'JUNCTION frame', u'V-GENE and allele', u'D-GENE and allele', u'J-GENE and allele', u'CDR1-IMGT length', u'CDR2-IMGT length', u'CDR3-IMGT length', u'Orientation'] | |
22 old_sequence_columns = [u'CDR1-IMGT', u'CDR2-IMGT', u'CDR3-IMGT'] | |
23 old_junction_columns = [u'JUNCTION'] | |
24 | |
25 added_summary_columns = [u'Functionality', u'V-REGION identity %', u'V-REGION identity nt', u'D-REGION reading frame', u'AA JUNCTION', u'Functionality comment', u'Sequence'] | |
26 added_sequence_columns = [u'FR1-IMGT', u'FR2-IMGT', u'FR3-IMGT', u'CDR3-IMGT', u'JUNCTION', u'J-REGION', u'FR4-IMGT'] | |
27 added_junction_columns = [u"P3'V-nt nb", u'N1-REGION-nt nb', u"P5'D-nt nb", u"P3'D-nt nb", u'N2-REGION-nt nb', u"P5'J-nt nb", u"3'V-REGION trimmed-nt nb", u"5'D-REGION trimmed-nt nb", u"3'D-REGION trimmed-nt nb", u"5'J-REGION trimmed-nt nb"] | |
28 | |
29 inputFolder = args.input | |
30 | |
31 dirContents = os.listdir(inputFolder) | |
32 if len(dirContents) == 1: | |
33 inputFolder = os.path.join(inputFolder, dirContents[0]) | |
34 if os.path.isdir(inputFolder): | |
35 print "is dir" | |
36 dirContents = os.listdir(inputFolder) | |
37 files = sorted([os.path.join(inputFolder, f) for f in dirContents]) | |
38 | |
39 if len(files) % 3 is not 0: | |
40 stop_err("Files in zip not a multiple of 3, it should contain the all the 1_, 5_ and 6_ files for a sample") | |
41 import sys | |
42 sys.exit() | |
43 | |
44 triplets = [] | |
45 step = len(files) / 3 | |
46 for i in range(0, step): | |
47 triplets.append((files[i], files[i + step], files[i + step + step])) | |
48 | |
49 outFile = args.output | |
50 | |
51 fSummary = pd.read_csv(triplets[0][0], sep="\t") | |
52 fSequence = pd.read_csv(triplets[0][1], sep="\t") | |
53 fJunction = pd.read_csv(triplets[0][2], sep="\t") | |
54 tmp = fSummary[["Sequence ID", "JUNCTION frame", "V-GENE and allele", "D-GENE and allele", "J-GENE and allele"]] | |
55 | |
56 tmp["CDR1 Seq"] = fSequence["CDR1-IMGT"] | |
57 tmp["CDR1 Length"] = fSummary["CDR1-IMGT length"] | |
58 | |
59 tmp["CDR2 Seq"] = fSequence["CDR2-IMGT"] | |
60 tmp["CDR2 Length"] = fSummary["CDR2-IMGT length"] | |
61 | |
62 tmp["CDR3 Seq"] = fSequence["CDR3-IMGT"] | |
63 tmp["CDR3 Length"] = fSummary["CDR3-IMGT length"] | |
64 | |
65 tmp["CDR3 Seq DNA"] = fJunction["JUNCTION"] | |
66 tmp["CDR3 Length DNA"] = '1' | |
67 tmp["Strand"] = fSummary["Orientation"] | |
68 tmp["CDR3 Found How"] = 'a' | |
69 | |
70 for col in added_summary_columns: | |
71 tmp[col] = fSummary[col] | |
72 | |
73 for col in added_sequence_columns: | |
74 tmp[col] = fSequence[col] | |
75 | |
76 for col in added_junction_columns: | |
77 tmp[col] = fJunction[col] | |
78 | |
79 outFrame = tmp | |
80 | |
81 for triple in triplets[1:]: | |
82 fSummary = pd.read_csv(triple[0], sep="\t") | |
83 fSequence = pd.read_csv(triple[1], sep="\t") | |
84 fJunction = pd.read_csv(triple[2], sep="\t") | |
85 | |
86 tmp = fSummary[["Sequence ID", "JUNCTION frame", "V-GENE and allele", "D-GENE and allele", "J-GENE and allele"]] | |
87 | |
88 tmp["CDR1 Seq"] = fSequence["CDR1-IMGT"] | |
89 tmp["CDR1 Length"] = fSummary["CDR1-IMGT length"] | |
90 | |
91 tmp["CDR2 Seq"] = fSequence["CDR2-IMGT"] | |
92 tmp["CDR2 Length"] = fSummary["CDR2-IMGT length"] | |
93 | |
94 tmp["CDR3 Seq"] = fSequence["CDR3-IMGT"] | |
95 tmp["CDR3 Length"] = fSummary["CDR3-IMGT length"] | |
96 | |
97 tmp["CDR3 Seq DNA"] = fJunction["JUNCTION"] | |
98 tmp["CDR3 Length DNA"] = '1' | |
99 tmp["Strand"] = fSummary["Orientation"] | |
100 tmp["CDR3 Found How"] = 'a' | |
101 | |
102 for col in added_summary_columns: | |
103 tmp[col] = fSummary[col] | |
104 | |
105 for col in added_sequence_columns: | |
106 tmp[col] = fSequence[col] | |
107 | |
108 for col in added_junction_columns: | |
109 tmp[col] = fJunction[col] | |
110 | |
111 outFrame = outFrame.append(tmp) | |
112 | |
113 outFrame.columns = [u'ID', u'VDJ Frame', u'Top V Gene', u'Top D Gene', u'Top J Gene', u'CDR1 Seq', u'CDR1 Length', u'CDR2 Seq', u'CDR2 Length', u'CDR3 Seq', u'CDR3 Length', u'CDR3 Seq DNA', u'CDR3 Length DNA', u'Strand', u'CDR3 Found How', u'Functionality', 'V-REGION identity %', 'V-REGION identity nt', 'D-REGION reading frame', 'AA JUNCTION', 'Functionality comment', 'Sequence', 'FR1-IMGT', 'FR2-IMGT', 'FR3-IMGT', 'CDR3-IMGT', 'JUNCTION', 'J-REGION', 'FR4-IMGT', 'P3V-nt nb', 'N1-REGION-nt nb', 'P5D-nt nb', 'P3D-nt nb', 'N2-REGION-nt nb', 'P5J-nt nb', '3V-REGION trimmed-nt nb', '5D-REGION trimmed-nt nb', '3D-REGION trimmed-nt nb', '5J-REGION trimmed-nt nb'] | |
114 | |
115 vPattern = re.compile(r"IGHV[1-9]-[0-9ab]+-?[1-9]?") | |
116 dPattern = re.compile(r"IGHD[1-9]-[0-9ab]+") | |
117 jPattern = re.compile(r"IGHJ[1-9]") | |
118 | |
119 def filterGenes(s, pattern): | |
120 if type(s) is not str: | |
121 return "NA" | |
122 res = pattern.search(s) | |
123 if res: | |
124 return res.group(0) | |
125 return "NA" | |
126 | |
127 | |
128 outFrame["Top V Gene"] = outFrame["Top V Gene"].apply(lambda x: filterGenes(x, vPattern)) | |
129 outFrame["Top D Gene"] = outFrame["Top D Gene"].apply(lambda x: filterGenes(x, dPattern)) | |
130 outFrame["Top J Gene"] = outFrame["Top J Gene"].apply(lambda x: filterGenes(x, jPattern)) | |
131 | |
132 | |
133 | |
134 tmp = outFrame["VDJ Frame"] | |
135 tmp = tmp.replace("in-frame", "In-frame") | |
136 tmp = tmp.replace("null", "Out-of-frame") | |
137 tmp = tmp.replace("out-of-frame", "Out-of-frame") | |
138 outFrame["VDJ Frame"] = tmp | |
139 outFrame["CDR3 Length DNA"] = outFrame["CDR3 Seq DNA"].map(str).map(len) | |
140 safeLength = lambda x: len(x) if type(x) == str else 0 | |
141 outFrame = outFrame[(outFrame["CDR3 Seq DNA"].map(safeLength) > 0) & (outFrame["Top V Gene"] != "NA") & (outFrame["Top D Gene"] != "NA") & (outFrame["Top J Gene"] != "NA")] #filter out weird rows? | |
142 outFrame.to_csv(outFile, sep="\t", index=False, index_label="index") |