Mercurial > repos > davidvanzessen > complete_immunerepertoire_igg
comparison RScript.r @ 0:7d97fa9a0423 draft
Uploaded
author | davidvanzessen |
---|---|
date | Fri, 09 May 2014 09:35:32 -0400 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:7d97fa9a0423 |
---|---|
1 #options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) | |
2 | |
3 args <- commandArgs(trailingOnly = TRUE) | |
4 | |
5 inFile = args[1] | |
6 outFile = args[2] | |
7 outDir = args[3] | |
8 clonalType = args[4] | |
9 species = args[5] | |
10 locus = args[6] | |
11 selection = args[7] | |
12 | |
13 | |
14 | |
15 if (!("gridExtra" %in% rownames(installed.packages()))) { | |
16 install.packages("gridExtra", repos="http://cran.xl-mirror.nl/") | |
17 } | |
18 library(gridExtra) | |
19 if (!("ggplot2" %in% rownames(installed.packages()))) { | |
20 install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") | |
21 } | |
22 require(ggplot2) | |
23 if (!("plyr" %in% rownames(installed.packages()))) { | |
24 install.packages("plyr", repos="http://cran.xl-mirror.nl/") | |
25 } | |
26 require(plyr) | |
27 | |
28 if (!("data.table" %in% rownames(installed.packages()))) { | |
29 install.packages("data.table", repos="http://cran.xl-mirror.nl/") | |
30 } | |
31 library(data.table) | |
32 | |
33 if (!("reshape2" %in% rownames(installed.packages()))) { | |
34 install.packages("reshape2", repos="http://cran.xl-mirror.nl/") | |
35 } | |
36 library(reshape2) | |
37 | |
38 | |
39 test = read.table(inFile, sep="\t", header=TRUE, fill=T, comment.char="") | |
40 | |
41 test = test[test$Sample != "",] | |
42 | |
43 test$Top.V.Gene = gsub("[*]([0-9]+)", "", test$Top.V.Gene) | |
44 test$Top.D.Gene = gsub("[*]([0-9]+)", "", test$Top.D.Gene) | |
45 test$Top.J.Gene = gsub("[*]([0-9]+)", "", test$Top.J.Gene) | |
46 | |
47 #test$VDJCDR3 = do.call(paste, c(test[c("Top.V.Gene", "Top.D.Gene", "Top.J.Gene","CDR3.Seq.DNA")], sep = ":")) | |
48 test$VDJCDR3 = do.call(paste, c(test[unlist(strsplit(clonalType, ","))], sep = ":")) | |
49 | |
50 PROD = test[test$VDJ.Frame != "In-frame with stop codon" & test$VDJ.Frame != "Out-of-frame" & test$CDR3.Found.How != "NOT_FOUND" , ] | |
51 if("Functionality" %in% colnames(test)) { | |
52 PROD = test[test$Functionality == "productive" | test$Functionality == "productive (see comment)", ] | |
53 } | |
54 | |
55 NONPROD = test[test$VDJ.Frame == "In-frame with stop codon" | test$VDJ.Frame == "Out-of-frame" | test$CDR3.Found.How == "NOT_FOUND" , ] | |
56 | |
57 #PRODF = PROD[ -1] | |
58 | |
59 PRODF = PROD | |
60 | |
61 #PRODF = unique(PRODF) | |
62 | |
63 | |
64 | |
65 if(selection == "unique"){ | |
66 PRODF = PRODF[!duplicated(PRODF$VDJCDR3), ] | |
67 } | |
68 | |
69 PRODFV = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.V.Gene")]) | |
70 PRODFV$Length = as.numeric(PRODFV$Length) | |
71 Total = 0 | |
72 Total = ddply(PRODFV, .(Sample), function(x) data.frame(Total = sum(x$Length))) | |
73 PRODFV = merge(PRODFV, Total, by.x='Sample', by.y='Sample', all.x=TRUE) | |
74 PRODFV = ddply(PRODFV, c("Sample", "Top.V.Gene"), summarise, relFreq= (Length*100 / Total)) | |
75 | |
76 PRODFD = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.D.Gene")]) | |
77 PRODFD$Length = as.numeric(PRODFD$Length) | |
78 Total = 0 | |
79 Total = ddply(PRODFD, .(Sample), function(x) data.frame(Total = sum(x$Length))) | |
80 PRODFD = merge(PRODFD, Total, by.x='Sample', by.y='Sample', all.x=TRUE) | |
81 PRODFD = ddply(PRODFD, c("Sample", "Top.D.Gene"), summarise, relFreq= (Length*100 / Total)) | |
82 | |
83 PRODFJ = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.J.Gene")]) | |
84 PRODFJ$Length = as.numeric(PRODFJ$Length) | |
85 Total = 0 | |
86 Total = ddply(PRODFJ, .(Sample), function(x) data.frame(Total = sum(x$Length))) | |
87 PRODFJ = merge(PRODFJ, Total, by.x='Sample', by.y='Sample', all.x=TRUE) | |
88 PRODFJ = ddply(PRODFJ, c("Sample", "Top.J.Gene"), summarise, relFreq= (Length*100 / Total)) | |
89 | |
90 | |
91 if(species == "human"){ | |
92 if(locus == "igh"){ | |
93 cat("human igh") | |
94 } else if (locus == "igk"){ | |
95 cat("human igk") | |
96 } else if (locus == "igl"){ | |
97 cat("human igl") | |
98 } | |
99 } else if (species == "mouse"){ | |
100 if(locus == "igh"){ | |
101 cat("mouse igh") | |
102 } else if (locus == "igk"){ | |
103 cat("mouse igk") | |
104 } else if (locus == "igl"){ | |
105 cat("mouse igl") | |
106 } | |
107 } | |
108 | |
109 V = c("v.name\tchr.orderV\nIGHV7-81\t1\nIGHV3-74\t2\nIGHV3-73\t3\nIGHV3-72\t4\nIGHV2-70\t6\nIGHV1-69\t7\nIGHV3-66\t8\nIGHV3-64\t9\nIGHV4-61\t10\nIGHV4-59\t11\nIGHV1-58\t12\nIGHV3-53\t13\nIGHV5-a\t15\nIGHV5-51\t16\nIGHV3-49\t17\nIGHV3-48\t18\nIGHV1-46\t20\nIGHV1-45\t21\nIGHV3-43\t22\nIGHV4-39\t23\nIGHV3-35\t24\nIGHV4-34\t25\nIGHV3-33\t26\nIGHV4-31\t27\nIGHV4-30-4\t28\nIGHV4-30-2\t29\nIGHV3-30-3\t30\nIGHV3-30\t31\nIGHV4-28\t32\nIGHV2-26\t33\nIGHV1-24\t34\nIGHV3-23\t35\nIGHV3-21\t37\nIGHV3-20\t38\nIGHV1-18\t40\nIGHV3-15\t41\nIGHV3-13\t42\nIGHV3-11\t43\nIGHV3-9\t44\nIGHV1-8\t45\nIGHV3-7\t46\nIGHV2-5\t47\nIGHV7-4-1\t48\nIGHV4-4\t49\nIGHV4-b\t50\nIGHV1-3\t51\nIGHV1-2\t52\nIGHV6-1\t53") | |
110 D = c("v.name\tchr.orderD\nIGHD1-1\t1\nIGHD2-2\t2\nIGHD3-3\t3\nIGHD6-6\t4\nIGHD1-7\t5\nIGHD2-8\t6\nIGHD3-9\t7\nIGHD3-10\t8\nIGHD4-11\t9\nIGHD5-12\t10\nIGHD6-13\t11\nIGHD1-14\t12\nIGHD2-15\t13\nIGHD3-16\t14\nIGHD4-17\t15\nIGHD5-18\t16\nIGHD6-19\t17\nIGHD1-20\t18\nIGHD2-21\t19\nIGHD3-22\t20\nIGHD4-23\t21\nIGHD5-24\t22\nIGHD6-25\t23\nIGHD1-26\t24\nIGHD7-27\t25") | |
111 J = c("v.name\tchr.orderJ\nIGHJ1\t1\nIGHJ2\t2\nIGHJ3\t3\nIGHJ4\t4\nIGHJ5\t5\nIGHJ6\t6") | |
112 | |
113 | |
114 | |
115 | |
116 tcV = textConnection(V) | |
117 Vchain = read.table(tcV, sep="\t", header=TRUE) | |
118 PRODFV = merge(PRODFV, Vchain, by.x='Top.V.Gene', by.y='v.name', all.x=TRUE) | |
119 close(tcV) | |
120 | |
121 | |
122 tcD = textConnection(D) | |
123 Dchain = read.table(tcD, sep="\t", header=TRUE) | |
124 PRODFD = merge(PRODFD, Dchain, by.x='Top.D.Gene', by.y='v.name', all.x=TRUE) | |
125 close(tcD) | |
126 | |
127 | |
128 | |
129 tcJ = textConnection(J) | |
130 Jchain = read.table(tcJ, sep="\t", header=TRUE) | |
131 PRODFJ = merge(PRODFJ, Jchain, by.x='Top.J.Gene', by.y='v.name', all.x=TRUE) | |
132 close(tcJ) | |
133 | |
134 setwd(outDir) | |
135 | |
136 write.table(PRODF, "allUnique.csv", sep=",",quote=F,row.names=F,col.names=T) | |
137 | |
138 pV = ggplot(PRODFV) | |
139 pV = pV + geom_bar( aes( x=factor(reorder(Top.V.Gene, chr.orderV)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) | |
140 pV = pV + xlab("Summary of V gene") + ylab("Frequency") + ggtitle("Relative frequency of V gene usage") | |
141 write.table(x=PRODFV, file="VFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | |
142 | |
143 png("VPlot.png",width = 1280, height = 720) | |
144 pV | |
145 dev.off(); | |
146 | |
147 pD = ggplot(PRODFD) | |
148 pD = pD + geom_bar( aes( x=factor(reorder(Top.D.Gene, chr.orderD)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) | |
149 pD = pD + xlab("Summary of D gene") + ylab("Frequency") + ggtitle("Relative frequency of D gene usage") | |
150 write.table(x=PRODFD, file="DFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | |
151 | |
152 png("DPlot.png",width = 800, height = 600) | |
153 pD | |
154 dev.off(); | |
155 | |
156 pJ = ggplot(PRODFJ) | |
157 pJ = pJ + geom_bar( aes( x=factor(reorder(Top.J.Gene, chr.orderJ)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) | |
158 pJ = pJ + xlab("Summary of J gene") + ylab("Frequency") + ggtitle("Relative frequency of J gene usage") | |
159 write.table(x=PRODFJ, file="JFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | |
160 | |
161 png("JPlot.png",width = 800, height = 600) | |
162 pJ | |
163 dev.off(); | |
164 | |
165 VGenes = PRODF[,c("Sample", "Top.V.Gene")] | |
166 VGenes$Top.V.Gene = gsub("-.*", "", VGenes$Top.V.Gene) | |
167 VGenes = data.frame(data.table(VGenes)[, list(Count=.N), by=c("Sample", "Top.V.Gene")]) | |
168 TotalPerSample = data.frame(data.table(VGenes)[, list(total=sum(.SD$Count)), by=Sample]) | |
169 VGenes = merge(VGenes, TotalPerSample, by="Sample") | |
170 VGenes$Frequency = VGenes$Count * 100 / VGenes$total | |
171 VPlot = ggplot(VGenes) | |
172 VPlot = VPlot + geom_bar(aes( x = Top.V.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
173 ggtitle("Distribution of V gene families") + | |
174 ylab("Percentage of sequences") | |
175 png("VFPlot.png") | |
176 VPlot | |
177 dev.off(); | |
178 write.table(x=VGenes, file="VFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | |
179 | |
180 DGenes = PRODF[,c("Sample", "Top.D.Gene")] | |
181 DGenes$Top.D.Gene = gsub("-.*", "", DGenes$Top.D.Gene) | |
182 DGenes = data.frame(data.table(DGenes)[, list(Count=.N), by=c("Sample", "Top.D.Gene")]) | |
183 TotalPerSample = data.frame(data.table(DGenes)[, list(total=sum(.SD$Count)), by=Sample]) | |
184 DGenes = merge(DGenes, TotalPerSample, by="Sample") | |
185 DGenes$Frequency = DGenes$Count * 100 / DGenes$total | |
186 DPlot = ggplot(DGenes) | |
187 DPlot = DPlot + geom_bar(aes( x = Top.D.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
188 ggtitle("Distribution of D gene families") + | |
189 ylab("Percentage of sequences") | |
190 png("DFPlot.png") | |
191 DPlot | |
192 dev.off(); | |
193 write.table(x=DGenes, file="DFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | |
194 | |
195 JGenes = PRODF[,c("Sample", "Top.J.Gene")] | |
196 JGenes$Top.J.Gene = gsub("-.*", "", JGenes$Top.J.Gene) | |
197 JGenes = data.frame(data.table(JGenes)[, list(Count=.N), by=c("Sample", "Top.J.Gene")]) | |
198 TotalPerSample = data.frame(data.table(JGenes)[, list(total=sum(.SD$Count)), by=Sample]) | |
199 JGenes = merge(JGenes, TotalPerSample, by="Sample") | |
200 JGenes$Frequency = JGenes$Count * 100 / JGenes$total | |
201 JPlot = ggplot(JGenes) | |
202 JPlot = JPlot + geom_bar(aes( x = Top.J.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
203 ggtitle("Distribution of J gene families") + | |
204 ylab("Percentage of sequences") | |
205 png("JFPlot.png") | |
206 JPlot | |
207 dev.off(); | |
208 write.table(x=JGenes, file="JFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | |
209 | |
210 CDR3Length = data.frame(data.table(PRODF)[, list(Count=.N), by=c("Sample", "CDR3.Length.DNA")]) | |
211 TotalPerSample = data.frame(data.table(CDR3Length)[, list(total=sum(.SD$Count)), by=Sample]) | |
212 CDR3Length = merge(CDR3Length, TotalPerSample, by="Sample") | |
213 CDR3Length$Frequency = CDR3Length$Count * 100 / CDR3Length$total | |
214 CDR3LengthPlot = ggplot(CDR3Length) | |
215 CDR3LengthPlot = CDR3LengthPlot + geom_bar(aes( x = CDR3.Length.DNA, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
216 ggtitle("Length distribution of CDR3") + | |
217 xlab("CDR3 Length") + | |
218 ylab("Percentage of sequences") | |
219 png("CDR3LengthPlot.png",width = 1280, height = 720) | |
220 CDR3LengthPlot | |
221 dev.off() | |
222 write.table(x=CDR3Length, file="CDR3LengthPlot.csv", sep=",",quote=F,row.names=F,col.names=T) | |
223 | |
224 revVchain = Vchain | |
225 revDchain = Dchain | |
226 revVchain$chr.orderV = rev(revVchain$chr.orderV) | |
227 revDchain$chr.orderD = rev(revDchain$chr.orderD) | |
228 | |
229 plotVD <- function(dat){ | |
230 if(length(dat[,1]) == 0){ | |
231 return() | |
232 } | |
233 img = ggplot() + | |
234 geom_tile(data=dat, aes(x=factor(reorder(Top.D.Gene, chr.orderD)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + | |
235 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
236 scale_fill_gradient(low="gold", high="blue", na.value="white") + | |
237 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | |
238 xlab("D genes") + | |
239 ylab("V Genes") | |
240 | |
241 png(paste("HeatmapVD_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Dchain$v.name)), height=100+(15*length(Vchain$v.name))) | |
242 print(img) | |
243 | |
244 dev.off() | |
245 write.table(x=acast(dat, Top.V.Gene~Top.D.Gene, value.var="Length"), file=paste("HeatmapVD_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA) | |
246 } | |
247 | |
248 VandDCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.D.Gene", "Sample")]) | |
249 | |
250 VandDCount$l = log(VandDCount$Length) | |
251 maxVD = data.frame(data.table(VandDCount)[, list(max=max(l)), by=c("Sample")]) | |
252 VandDCount = merge(VandDCount, maxVD, by.x="Sample", by.y="Sample", all.x=T) | |
253 VandDCount$relLength = VandDCount$l / VandDCount$max | |
254 | |
255 cartegianProductVD = expand.grid(Top.V.Gene = Vchain$v.name, Top.D.Gene = Dchain$v.name, Sample = unique(test$Sample)) | |
256 | |
257 completeVD = merge(VandDCount, cartegianProductVD, all.y=TRUE) | |
258 completeVD = merge(completeVD, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) | |
259 completeVD = merge(completeVD, Dchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) | |
260 VDList = split(completeVD, f=completeVD[,"Sample"]) | |
261 | |
262 lapply(VDList, FUN=plotVD) | |
263 | |
264 | |
265 | |
266 plotVJ <- function(dat){ | |
267 if(length(dat[,1]) == 0){ | |
268 return() | |
269 } | |
270 img = ggplot() + | |
271 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + | |
272 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
273 scale_fill_gradient(low="gold", high="blue", na.value="white") + | |
274 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | |
275 xlab("J genes") + | |
276 ylab("V Genes") | |
277 | |
278 png(paste("HeatmapVJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Vchain$v.name))) | |
279 print(img) | |
280 dev.off() | |
281 write.table(x=acast(dat, Top.V.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapVJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA) | |
282 } | |
283 | |
284 VandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.J.Gene", "Sample")]) | |
285 | |
286 VandJCount$l = log(VandJCount$Length) | |
287 maxVJ = data.frame(data.table(VandJCount)[, list(max=max(l)), by=c("Sample")]) | |
288 VandJCount = merge(VandJCount, maxVJ, by.x="Sample", by.y="Sample", all.x=T) | |
289 VandJCount$relLength = VandJCount$l / VandJCount$max | |
290 | |
291 cartegianProductVJ = expand.grid(Top.V.Gene = Vchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample)) | |
292 | |
293 completeVJ = merge(VandJCount, cartegianProductVJ, all.y=TRUE) | |
294 completeVJ = merge(completeVJ, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) | |
295 completeVJ = merge(completeVJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) | |
296 VJList = split(completeVJ, f=completeVJ[,"Sample"]) | |
297 lapply(VJList, FUN=plotVJ) | |
298 | |
299 plotDJ <- function(dat){ | |
300 if(length(dat[,1]) == 0){ | |
301 return() | |
302 } | |
303 img = ggplot() + | |
304 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.D.Gene, chr.orderD)), fill=relLength)) + | |
305 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
306 scale_fill_gradient(low="gold", high="blue", na.value="white") + | |
307 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | |
308 xlab("J genes") + | |
309 ylab("D Genes") | |
310 | |
311 png(paste("HeatmapDJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Dchain$v.name))) | |
312 print(img) | |
313 dev.off() | |
314 write.table(x=acast(dat, Top.D.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapDJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA) | |
315 } | |
316 | |
317 DandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.D.Gene", "Top.J.Gene", "Sample")]) | |
318 | |
319 DandJCount$l = log(DandJCount$Length) | |
320 maxDJ = data.frame(data.table(DandJCount)[, list(max=max(l)), by=c("Sample")]) | |
321 DandJCount = merge(DandJCount, maxDJ, by.x="Sample", by.y="Sample", all.x=T) | |
322 DandJCount$relLength = DandJCount$l / DandJCount$max | |
323 | |
324 cartegianProductDJ = expand.grid(Top.D.Gene = Dchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample)) | |
325 | |
326 completeDJ = merge(DandJCount, cartegianProductDJ, all.y=TRUE) | |
327 completeDJ = merge(completeDJ, revDchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) | |
328 completeDJ = merge(completeDJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) | |
329 DJList = split(completeDJ, f=completeDJ[,"Sample"]) | |
330 lapply(DJList, FUN=plotDJ) | |
331 | |
332 | |
333 sampleFile <- file("samples.txt") | |
334 un = unique(test$Sample) | |
335 un = paste(un, sep="\n") | |
336 writeLines(un, sampleFile) | |
337 close(sampleFile) | |
338 | |
339 | |
340 if("Replicate" %in% colnames(test)) | |
341 { | |
342 clonalityFrame = PROD | |
343 clonalityFrame$ReplicateConcat = do.call(paste, c(clonalityFrame[c("VDJCDR3", "Sample", "Replicate")], sep = ":")) | |
344 clonalityFrame = clonalityFrame[!duplicated(clonalityFrame$ReplicateConcat), ] | |
345 write.table(clonalityFrame, "clonalityComplete.csv", sep=",",quote=F,row.names=F,col.names=T) | |
346 | |
347 ClonalitySampleReplicatePrint <- function(dat){ | |
348 write.table(dat, paste("clonality_", unique(dat$Sample) , "_", unique(dat$Replicate), ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=T) | |
349 } | |
350 | |
351 clonalityFrameSplit = split(clonalityFrame, f=clonalityFrame[,c("Sample", "Replicate")]) | |
352 #lapply(clonalityFrameSplit, FUN=ClonalitySampleReplicatePrint) | |
353 | |
354 ClonalitySamplePrint <- function(dat){ | |
355 write.table(dat, paste("clonality_", unique(dat$Sample) , ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=T) | |
356 } | |
357 | |
358 clonalityFrameSplit = split(clonalityFrame, f=clonalityFrame[,"Sample"]) | |
359 #lapply(clonalityFrameSplit, FUN=ClonalitySamplePrint) | |
360 | |
361 clonalFreq = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "VDJCDR3")]) | |
362 clonalFreqCount = data.frame(data.table(clonalFreq)[, list(Count=.N), by=c("Sample", "Type")]) | |
363 clonalFreqCount$realCount = clonalFreqCount$Type * clonalFreqCount$Count | |
364 clonalSum = data.frame(data.table(clonalFreqCount)[, list(Reads=sum(realCount)), by=c("Sample")]) | |
365 clonalFreqCount = merge(clonalFreqCount, clonalSum, by.x="Sample", by.y="Sample") | |
366 | |
367 ct = c('Type\tWeight\n2\t1\n3\t3\n4\t6\n5\t10\n6\t15') | |
368 tcct = textConnection(ct) | |
369 CT = read.table(tcct, sep="\t", header=TRUE) | |
370 close(tcct) | |
371 clonalFreqCount = merge(clonalFreqCount, CT, by.x="Type", by.y="Type", all.x=T) | |
372 clonalFreqCount$WeightedCount = clonalFreqCount$Count * clonalFreqCount$Weight | |
373 | |
374 ReplicateReads = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "Replicate", "VDJCDR3")]) | |
375 ReplicateReads = data.frame(data.table(ReplicateReads)[, list(Reads=.N), by=c("Sample", "Replicate")]) | |
376 clonalFreqCount$Reads = as.numeric(clonalFreqCount$Reads) | |
377 ReplicateReads$squared = ReplicateReads$Reads * ReplicateReads$Reads | |
378 | |
379 ReplicatePrint <- function(dat){ | |
380 write.table(dat[-1], paste("ReplicateReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
381 } | |
382 | |
383 ReplicateSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) | |
384 lapply(ReplicateSplit, FUN=ReplicatePrint) | |
385 | |
386 ReplicateReads = data.frame(data.table(ReplicateReads)[, list(ReadsSum=sum(Reads), ReadsSquaredSum=sum(squared)), by=c("Sample")]) | |
387 clonalFreqCount = merge(clonalFreqCount, ReplicateReads, by.x="Sample", by.y="Sample", all.x=T) | |
388 | |
389 | |
390 ReplicateSumPrint <- function(dat){ | |
391 write.table(dat[-1], paste("ReplicateSumReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
392 } | |
393 | |
394 ReplicateSumSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) | |
395 lapply(ReplicateSumSplit, FUN=ReplicateSumPrint) | |
396 | |
397 clonalFreqCountSum = data.frame(data.table(clonalFreqCount)[, list(Numerator=sum(WeightedCount, na.rm=T)), by=c("Sample")]) | |
398 clonalFreqCount = merge(clonalFreqCount, clonalFreqCountSum, by.x="Sample", by.y="Sample", all.x=T) | |
399 clonalFreqCount$ReadsSum = as.numeric(clonalFreqCount$ReadsSum) #prevent integer overflow | |
400 clonalFreqCount$Denominator = (((clonalFreqCount$ReadsSum * clonalFreqCount$ReadsSum) - clonalFreqCount$ReadsSquaredSum) / 2) | |
401 clonalFreqCount$Result = (clonalFreqCount$Numerator + 1) / (clonalFreqCount$Denominator + 1) | |
402 | |
403 ClonalityScorePrint <- function(dat){ | |
404 write.table(dat$Result, paste("ClonalityScore_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
405 } | |
406 | |
407 clonalityScore = clonalFreqCount[c("Sample", "Result")] | |
408 clonalityScore = unique(clonalityScore) | |
409 | |
410 clonalityScoreSplit = split(clonalityScore, f=clonalityScore[,"Sample"]) | |
411 lapply(clonalityScoreSplit, FUN=ClonalityScorePrint) | |
412 | |
413 clonalityOverview = clonalFreqCount[c("Sample", "Type", "Count", "Weight", "WeightedCount")] | |
414 | |
415 | |
416 | |
417 ClonalityOverviewPrint <- function(dat){ | |
418 write.table(dat[-1], paste("ClonalityOverView_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
419 } | |
420 | |
421 clonalityOverviewSplit = split(clonalityOverview, f=clonalityOverview$Sample) | |
422 lapply(clonalityOverviewSplit, FUN=ClonalityOverviewPrint) | |
423 } | |
424 | |
425 if("Functionality" %in% colnames(test)) | |
426 { | |
427 newData = data.frame(data.table(PROD)[,list(unique=.N, | |
428 VH.DEL=mean(X3V.REGION.trimmed.nt.nb), | |
429 P1=mean(P3V.nt.nb), | |
430 N1=mean(N1.REGION.nt.nb), | |
431 P2=mean(P5D.nt.nb), | |
432 DEL.DH=mean(X5D.REGION.trimmed.nt.nb), | |
433 DH.DEL=mean(X3D.REGION.trimmed.nt.nb), | |
434 P3=mean(P3D.nt.nb), | |
435 N2=mean(N2.REGION.nt.nb), | |
436 P4=mean(P5J.nt.nb), | |
437 DEL.JH=mean(X5J.REGION.trimmed.nt.nb), | |
438 Total.Del=( mean(X3V.REGION.trimmed.nt.nb) + | |
439 mean(X5D.REGION.trimmed.nt.nb) + | |
440 mean(X3D.REGION.trimmed.nt.nb) + | |
441 mean(X5J.REGION.trimmed.nt.nb)), | |
442 | |
443 Total.N=( mean(N1.REGION.nt.nb) + | |
444 mean(N2.REGION.nt.nb)), | |
445 | |
446 Total.P=( mean(P3V.nt.nb) + | |
447 mean(P5D.nt.nb) + | |
448 mean(P3D.nt.nb) + | |
449 mean(P5J.nt.nb))), | |
450 by=c("Sample")]) | |
451 write.table(newData, "junctionAnalysis.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F) | |
452 } |