Mercurial > repos > davidvanzessen > combined_immune_repertoire_pipeline
comparison RScript.r @ 0:4e3df2384422 draft
Uploaded
author | davidvanzessen |
---|---|
date | Wed, 20 Nov 2013 10:00:28 -0500 |
parents | |
children | 87fb14480352 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:4e3df2384422 |
---|---|
1 options( show.error.messages=F, error = function () { cat( geterrmessage(), file=stderr() ); q( "no", 1, F ) } ) | |
2 | |
3 args <- commandArgs(trailingOnly = TRUE) | |
4 | |
5 inFile = args[1] | |
6 outFile = args[2] | |
7 outDir = args[3] | |
8 | |
9 if (!("gridExtra" %in% rownames(installed.packages()))) { | |
10 install.packages("gridExtra", repos="http://cran.xl-mirror.nl/") | |
11 } | |
12 library(gridExtra) | |
13 if (!("ggplot2" %in% rownames(installed.packages()))) { | |
14 install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") | |
15 } | |
16 require(ggplot2) | |
17 if (!("plyr" %in% rownames(installed.packages()))) { | |
18 install.packages("plyr", repos="http://cran.xl-mirror.nl/") | |
19 } | |
20 require(plyr) | |
21 | |
22 if (!("data.table" %in% rownames(installed.packages()))) { | |
23 install.packages("data.table", repos="http://cran.xl-mirror.nl/") | |
24 } | |
25 library(data.table) | |
26 | |
27 | |
28 test = read.table(inFile, sep="\t", header=TRUE, fill=T) | |
29 | |
30 test = test[test$Sample != "",] | |
31 | |
32 test$Top.V.Gene = gsub("[*]([0-9]+)", "", test$Top.V.Gene) | |
33 test$Top.D.Gene = gsub("[*]([0-9]+)", "", test$Top.D.Gene) | |
34 test$Top.J.Gene = gsub("[*]([0-9]+)", "", test$Top.J.Gene) | |
35 | |
36 test$VDJCDR3 = do.call(paste, c(test[c("Top.V.Gene", "Top.D.Gene", "Top.J.Gene","CDR3.Seq.DNA")], sep = ":")) | |
37 | |
38 PROD = test[test$VDJ.Frame != "In-frame with stop codon" & test$VDJ.Frame != "Out-of-frame" & test$CDR3.Found.How != "NOT_FOUND" , ] | |
39 | |
40 NONPROD = test[test$VDJ.Frame == "In-frame with stop codon" | test$VDJ.Frame == "Out-of-frame" | test$CDR3.Found.How == "NOT_FOUND" , ] | |
41 | |
42 #PRODF = PROD[ -1] | |
43 | |
44 PRODF = PROD | |
45 | |
46 #PRODF = unique(PRODF) | |
47 PRODF = PRODF[!duplicated(PRODF$VDJCDR3), ] | |
48 | |
49 PRODFV = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.V.Gene")]) | |
50 PRODFV$Length = as.numeric(PRODFV$Length) | |
51 Total = 0 | |
52 Total = ddply(PRODFV, .(Sample), function(x) data.frame(Total = sum(x$Length))) | |
53 PRODFV = merge(PRODFV, Total, by.x='Sample', by.y='Sample', all.x=TRUE) | |
54 PRODFV = ddply(PRODFV, c("Sample", "Top.V.Gene"), summarise, relFreq= (Length*100 / Total)) | |
55 | |
56 PRODFD = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.D.Gene")]) | |
57 PRODFD$Length = as.numeric(PRODFD$Length) | |
58 Total = 0 | |
59 Total = ddply(PRODFD, .(Sample), function(x) data.frame(Total = sum(x$Length))) | |
60 PRODFD = merge(PRODFD, Total, by.x='Sample', by.y='Sample', all.x=TRUE) | |
61 PRODFD = ddply(PRODFD, c("Sample", "Top.D.Gene"), summarise, relFreq= (Length*100 / Total)) | |
62 | |
63 PRODFJ = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Sample", "Top.J.Gene")]) | |
64 PRODFJ$Length = as.numeric(PRODFJ$Length) | |
65 Total = 0 | |
66 Total = ddply(PRODFJ, .(Sample), function(x) data.frame(Total = sum(x$Length))) | |
67 PRODFJ = merge(PRODFJ, Total, by.x='Sample', by.y='Sample', all.x=TRUE) | |
68 PRODFJ = ddply(PRODFJ, c("Sample", "Top.J.Gene"), summarise, relFreq= (Length*100 / Total)) | |
69 | |
70 V = c("v.name\tchr.orderV\nIGHV7-81\t1\nIGHV3-74\t2\nIGHV3-73\t3\nIGHV3-72\t4\nIGHV3-71\t5\nIGHV2-70\t6\nIGHV1-69\t7\nIGHV3-66\t8\nIGHV3-64\t9\nIGHV4-61\t10\nIGHV4-59\t11\nIGHV1-58\t12\nIGHV3-53\t13\nIGHV3-52\t14\nIGHV5-a\t15\nIGHV5-51\t16\nIGHV3-49\t17\nIGHV3-48\t18\nIGHV3-47\t19\nIGHV1-46\t20\nIGHV1-45\t21\nIGHV3-43\t22\nIGHV4-39\t23\nIGHV3-35\t24\nIGHV4-34\t25\nIGHV3-33\t26\nIGHV4-31\t27\nIGHV4-30-4\t28\nIGHV4-30-2\t29\nIGHV3-30-3\t30\nIGHV3-30\t31\nIGHV4-28\t32\nIGHV2-26\t33\nIGHV1-24\t34\nIGHV3-23\t35\nIGHV3-22\t36\nIGHV3-21\t37\nIGHV3-20\t38\nIGHV3-19\t39\nIGHV1-18\t40\nIGHV3-15\t41\nIGHV3-13\t42\nIGHV3-11\t43\nIGHV3-9\t44\nIGHV1-8\t45\nIGHV3-7\t46\nIGHV2-5\t47\nIGHV7-4-1\t48\nIGHV4-4\t49\nIGHV4-b\t50\nIGHV1-3\t51\nIGHV1-2\t52\nIGHV6-1\t53") | |
71 tcV = textConnection(V) | |
72 Vchain = read.table(tcV, sep="\t", header=TRUE) | |
73 PRODFV = merge(PRODFV, Vchain, by.x='Top.V.Gene', by.y='v.name', all.x=TRUE) | |
74 close(tcV) | |
75 | |
76 D = c("v.name\tchr.orderD\nIGHD1-1\t1\nIGHD2-2\t2\nIGHD3-3\t3\nIGHD6-6\t4\nIGHD1-7\t5\nIGHD2-8\t6\nIGHD3-9\t7\nIGHD3-10\t8\nIGHD4-11\t9\nIGHD5-12\t10\nIGHD6-13\t11\nIGHD1-14\t12\nIGHD2-15\t13\nIGHD3-16\t14\nIGHD4-17\t15\nIGHD5-18\t16\nIGHD6-19\t17\nIGHD1-20\t18\nIGHD2-21\t19\nIGHD3-22\t20\nIGHD4-23\t21\nIGHD5-24\t22\nIGHD6-25\t23\nIGHD1-26\t24\nIGHD7-27\t25") | |
77 tcD = textConnection(D) | |
78 Dchain = read.table(tcD, sep="\t", header=TRUE) | |
79 PRODFD = merge(PRODFD, Dchain, by.x='Top.D.Gene', by.y='v.name', all.x=TRUE) | |
80 close(tcD) | |
81 | |
82 | |
83 J = c("v.name\tchr.orderJ\nIGHJ1\t1\nIGHJ2\t2\nIGHJ3\t3\nIGHJ4\t4\nIGHJ5\t5\nIGHJ6\t6") | |
84 tcJ = textConnection(J) | |
85 Jchain = read.table(tcJ, sep="\t", header=TRUE) | |
86 PRODFJ = merge(PRODFJ, Jchain, by.x='Top.J.Gene', by.y='v.name', all.x=TRUE) | |
87 close(tcJ) | |
88 | |
89 setwd(outDir) | |
90 | |
91 pV = ggplot(PRODFV) | |
92 pV = pV + geom_bar( aes( x=factor(reorder(Top.V.Gene, chr.orderV)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) | |
93 pV = pV + xlab("Summary of V gene") + ylab("Frequency") + ggtitle("Relative frequency of V gene usage") | |
94 | |
95 png("VPlot.png",width = 1280, height = 720) | |
96 pV | |
97 dev.off(); | |
98 | |
99 pD = ggplot(PRODFD) | |
100 pD = pD + geom_bar( aes( x=factor(reorder(Top.D.Gene, chr.orderD)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) | |
101 pD = pD + xlab("Summary of D gene") + ylab("Frequency") + ggtitle("Relative frequency of D gene usage") | |
102 | |
103 png("DPlot.png",width = 800, height = 600) | |
104 pD | |
105 dev.off(); | |
106 | |
107 pJ = ggplot(PRODFJ) | |
108 pJ = pJ + geom_bar( aes( x=factor(reorder(Top.J.Gene, chr.orderJ)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) | |
109 pJ = pJ + xlab("Summary of J gene") + ylab("Frequency") + ggtitle("Relative frequency of J gene usage") | |
110 | |
111 png("JPlot.png",width = 800, height = 600) | |
112 pJ | |
113 dev.off(); | |
114 | |
115 revVchain = Vchain | |
116 revDchain = Dchain | |
117 revVchain$chr.orderV = rev(revVchain$chr.orderV) | |
118 revDchain$chr.orderD = rev(revDchain$chr.orderD) | |
119 | |
120 plotVD <- function(dat){ | |
121 if(length(dat[,1]) == 0){ | |
122 return() | |
123 } | |
124 img = ggplot() + | |
125 geom_tile(data=dat, aes(x=factor(reorder(Top.D.Gene, chr.orderD)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + | |
126 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
127 scale_fill_gradient(low="gold", high="blue", na.value="white", limits=c(0,1)) + | |
128 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | |
129 xlab("D genes") + | |
130 ylab("V Genes") | |
131 | |
132 png(paste("HeatmapVD_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Dchain$v.name)), height=100+(15*length(Vchain$v.name))) | |
133 print(img) | |
134 dev.off() | |
135 } | |
136 | |
137 VandDCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.D.Gene", "Sample")]) | |
138 | |
139 VandDCount$l = log(VandDCount$Length) | |
140 maxVD = data.frame(data.table(VandDCount)[, list(max=max(l)), by=c("Sample")]) | |
141 VandDCount = merge(VandDCount, maxVD, by.x="Sample", by.y="Sample", all.x=T) | |
142 VandDCount$relLength = VandDCount$l / VandDCount$max | |
143 | |
144 cartegianProductVD = expand.grid(Top.V.Gene = Vchain$v.name, Top.D.Gene = Dchain$v.name, Sample = unique(test$Sample)) | |
145 | |
146 completeVD = merge(VandDCount, cartegianProductVD, all.y=TRUE) | |
147 completeVD = merge(completeVD, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) | |
148 completeVD = merge(completeVD, Dchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) | |
149 VDList = split(completeVD, f=completeVD[,"Sample"]) | |
150 | |
151 lapply(VDList, FUN=plotVD) | |
152 | |
153 | |
154 | |
155 plotVJ <- function(dat){ | |
156 if(length(dat[,1]) == 0){ | |
157 return() | |
158 } | |
159 img = ggplot() + | |
160 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + | |
161 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
162 scale_fill_gradient(low="gold", high="blue", na.value="white", limits=c(0,1)) + | |
163 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | |
164 xlab("J genes") + | |
165 ylab("V Genes") | |
166 | |
167 png(paste("HeatmapVJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Vchain$v.name))) | |
168 print(img) | |
169 dev.off() | |
170 } | |
171 | |
172 VandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.J.Gene", "Sample")]) | |
173 | |
174 VandJCount$l = log(VandJCount$Length) | |
175 maxVJ = data.frame(data.table(VandJCount)[, list(max=max(l)), by=c("Sample")]) | |
176 VandJCount = merge(VandJCount, maxVJ, by.x="Sample", by.y="Sample", all.x=T) | |
177 VandJCount$relLength = VandJCount$l / VandJCount$max | |
178 | |
179 cartegianProductVJ = expand.grid(Top.V.Gene = Vchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample)) | |
180 | |
181 completeVJ = merge(VandJCount, cartegianProductVJ, all.y=TRUE) | |
182 completeVJ = merge(completeVJ, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) | |
183 completeVJ = merge(completeVJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) | |
184 VJList = split(completeVJ, f=completeVJ[,"Sample"]) | |
185 lapply(VJList, FUN=plotVJ) | |
186 | |
187 plotDJ <- function(dat){ | |
188 if(length(dat[,1]) == 0){ | |
189 return() | |
190 } | |
191 img = ggplot() + | |
192 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.D.Gene, chr.orderD)), fill=relLength)) + | |
193 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
194 scale_fill_gradient(low="gold", high="blue", na.value="white", limits=c(0,1)) + | |
195 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | |
196 xlab("J genes") + | |
197 ylab("D Genes") | |
198 | |
199 png(paste("HeatmapDJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Dchain$v.name))) | |
200 print(img) | |
201 dev.off() | |
202 } | |
203 | |
204 DandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.D.Gene", "Top.J.Gene", "Sample")]) | |
205 | |
206 DandJCount$l = log(DandJCount$Length) | |
207 maxDJ = data.frame(data.table(DandJCount)[, list(max=max(l)), by=c("Sample")]) | |
208 DandJCount = merge(DandJCount, maxDJ, by.x="Sample", by.y="Sample", all.x=T) | |
209 DandJCount$relLength = DandJCount$l / DandJCount$max | |
210 | |
211 cartegianProductDJ = expand.grid(Top.D.Gene = Dchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(test$Sample)) | |
212 | |
213 completeDJ = merge(DandJCount, cartegianProductDJ, all.y=TRUE) | |
214 completeDJ = merge(completeDJ, revDchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) | |
215 completeDJ = merge(completeDJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) | |
216 DJList = split(completeDJ, f=completeDJ[,"Sample"]) | |
217 lapply(DJList, FUN=plotDJ) | |
218 | |
219 | |
220 sampleFile <- file("samples.txt") | |
221 un = unique(test$Sample) | |
222 un = paste(un, sep="\n") | |
223 writeLines(un, sampleFile) | |
224 close(sampleFile) |