Mercurial > repos > davidvanzessen > clonal_sequences_in_paired_samples
comparison RScript.r @ 31:ce8bd23d0335 draft
Uploaded
author | davidvanzessen |
---|---|
date | Tue, 02 Jun 2015 05:26:52 -0400 |
parents | 45554fd15511 |
children | dde5ec847549 |
comparison
equal
deleted
inserted
replaced
30:45554fd15511 | 31:ce8bd23d0335 |
---|---|
286 product = data.frame("Titles"=rep(Titles, each=length(interval)), "interval"=rep(interval, times=10), "V_Segments"=rep(V_Segments, each=length(interval)), "J_Segments"=rep(J_Segments, each=length(interval))) | 286 product = data.frame("Titles"=rep(Titles, each=length(interval)), "interval"=rep(interval, times=10), "V_Segments"=rep(V_Segments, each=length(interval)), "J_Segments"=rep(J_Segments, each=length(interval))) |
287 lapply(patients, FUN=patientCountOnColumn, product = product, interval=interval, on="normalized_read_count") | 287 lapply(patients, FUN=patientCountOnColumn, product = product, interval=interval, on="normalized_read_count") |
288 | 288 |
289 cat("</table></html>", file=logfile, append=T) | 289 cat("</table></html>", file=logfile, append=T) |
290 | 290 |
291 scales = 10^(0:ceiling(log10(max(single_patients$normalized_read_count)))) | 291 scales = 10^(0:6) #(0:ceiling(log10(max(scatterplot_locus_data$normalized_read_count)))) |
292 p = ggplot(single_patients, aes(Rearrangement, normalized_read_count)) + scale_y_log10(breaks=scales,labels=scales) | 292 p = ggplot(single_patients, aes(Rearrangement, normalized_read_count)) + scale_y_log10(breaks=scales,labels=scales) |
293 p = p + geom_point(aes(colour=type), position="jitter") | 293 p = p + geom_point(aes(colour=type), position="jitter") |
294 p = p + xlab("In one or both samples") + ylab("Reads") | 294 p = p + xlab("In one or both samples") + ylab("Reads") |
295 p = p + facet_grid(.~Patient) + ggtitle("Scatterplot of the reads of the patients with a single sample") | 295 p = p + facet_grid(.~Patient) + ggtitle("Scatterplot of the reads of the patients with a single sample") |
296 png("singles_reads_scatterplot.png", width=640 * length(unique(single_patients$Patient)), height=1080) | 296 png("singles_reads_scatterplot.png", width=640 * length(unique(single_patients$Patient)), height=1080) |
445 scatterplot_locus_data[not_in_one,]$type = "In multiple" | 445 scatterplot_locus_data[not_in_one,]$type = "In multiple" |
446 } | 446 } |
447 p = NULL | 447 p = NULL |
448 if(nrow(scatterplot_locus_data) != 0){ | 448 if(nrow(scatterplot_locus_data) != 0){ |
449 if(on == "normalized_read_count"){ | 449 if(on == "normalized_read_count"){ |
450 scales = 10^(0:ceiling(log10(max(scatterplot_locus_data$normalized_read_count)))) | 450 scales = 10^(0:6) #(0:ceiling(log10(max(scatterplot_locus_data$normalized_read_count)))) |
451 p = ggplot(scatterplot_locus_data, aes(type, normalized_read_count)) + scale_y_log10(breaks=scales,labels=scales) | 451 p = ggplot(scatterplot_locus_data, aes(type, normalized_read_count)) + scale_y_log10(breaks=scales,labels=scales) |
452 } else { | 452 } else { |
453 p = ggplot(scatterplot_locus_data, aes(type, Frequency)) | 453 p = ggplot(scatterplot_locus_data, aes(type, Frequency)) |
454 } | 454 } |
455 p = p + geom_point(aes(colour=type), position="jitter") | 455 p = p + geom_point(aes(colour=type), position="jitter") |