Mercurial > repos > davidvanzessen > argalaxy_tools
comparison report_clonality/RScript.r @ 58:a073fa12ef98 draft
Uploaded
| author | davidvanzessen |
|---|---|
| date | Fri, 18 Mar 2016 08:02:22 -0400 |
| parents | |
| children | 11ec9edfefee |
comparison
equal
deleted
inserted
replaced
| 57:16c7fc1c4bf8 | 58:a073fa12ef98 |
|---|---|
| 1 # ---------------------- load/install packages ---------------------- | |
| 2 | |
| 3 if (!("gridExtra" %in% rownames(installed.packages()))) { | |
| 4 install.packages("gridExtra", repos="http://cran.xl-mirror.nl/") | |
| 5 } | |
| 6 library(gridExtra) | |
| 7 if (!("ggplot2" %in% rownames(installed.packages()))) { | |
| 8 install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") | |
| 9 } | |
| 10 library(ggplot2) | |
| 11 if (!("plyr" %in% rownames(installed.packages()))) { | |
| 12 install.packages("plyr", repos="http://cran.xl-mirror.nl/") | |
| 13 } | |
| 14 library(plyr) | |
| 15 | |
| 16 if (!("data.table" %in% rownames(installed.packages()))) { | |
| 17 install.packages("data.table", repos="http://cran.xl-mirror.nl/") | |
| 18 } | |
| 19 library(data.table) | |
| 20 | |
| 21 if (!("reshape2" %in% rownames(installed.packages()))) { | |
| 22 install.packages("reshape2", repos="http://cran.xl-mirror.nl/") | |
| 23 } | |
| 24 library(reshape2) | |
| 25 | |
| 26 if (!("lymphclon" %in% rownames(installed.packages()))) { | |
| 27 install.packages("lymphclon", repos="http://cran.xl-mirror.nl/") | |
| 28 } | |
| 29 library(lymphclon) | |
| 30 | |
| 31 # ---------------------- parameters ---------------------- | |
| 32 | |
| 33 args <- commandArgs(trailingOnly = TRUE) | |
| 34 | |
| 35 infile = args[1] #path to input file | |
| 36 outfile = args[2] #path to output file | |
| 37 outdir = args[3] #path to output folder (html/images/data) | |
| 38 clonaltype = args[4] #clonaltype definition, or 'none' for no unique filtering | |
| 39 ct = unlist(strsplit(clonaltype, ",")) | |
| 40 species = args[5] #human or mouse | |
| 41 locus = args[6] # IGH, IGK, IGL, TRB, TRA, TRG or TRD | |
| 42 filterproductive = ifelse(args[7] == "yes", T, F) #should unproductive sequences be filtered out? (yes/no) | |
| 43 clonality_method = args[8] | |
| 44 | |
| 45 | |
| 46 # ---------------------- Data preperation ---------------------- | |
| 47 | |
| 48 print("Report Clonality - Data preperation") | |
| 49 | |
| 50 inputdata = read.table(infile, sep="\t", header=TRUE, fill=T, comment.char="") | |
| 51 | |
| 52 setwd(outdir) | |
| 53 | |
| 54 # remove weird rows | |
| 55 inputdata = inputdata[inputdata$Sample != "",] | |
| 56 | |
| 57 #remove the allele from the V,D and J genes | |
| 58 inputdata$Top.V.Gene = gsub("[*]([0-9]+)", "", inputdata$Top.V.Gene) | |
| 59 inputdata$Top.D.Gene = gsub("[*]([0-9]+)", "", inputdata$Top.D.Gene) | |
| 60 inputdata$Top.J.Gene = gsub("[*]([0-9]+)", "", inputdata$Top.J.Gene) | |
| 61 | |
| 62 #filter uniques | |
| 63 inputdata.removed = inputdata[NULL,] | |
| 64 | |
| 65 inputdata$clonaltype = 1:nrow(inputdata) | |
| 66 | |
| 67 PRODF = inputdata | |
| 68 UNPROD = inputdata | |
| 69 if(filterproductive){ | |
| 70 if("Functionality" %in% colnames(inputdata)) { # "Functionality" is an IMGT column | |
| 71 PRODF = inputdata[inputdata$Functionality == "productive" | inputdata$Functionality == "productive (see comment)", ] | |
| 72 UNPROD = inputdata[!(inputdata$Functionality == "productive" | inputdata$Functionality == "productive (see comment)"), ] | |
| 73 } else { | |
| 74 PRODF = inputdata[inputdata$VDJ.Frame != "In-frame with stop codon" & inputdata$VDJ.Frame != "Out-of-frame" & inputdata$CDR3.Found.How != "NOT_FOUND" , ] | |
| 75 UNPROD = inputdata[!(inputdata$VDJ.Frame != "In-frame with stop codon" & inputdata$VDJ.Frame != "Out-of-frame" & inputdata$CDR3.Found.How != "NOT_FOUND" ), ] | |
| 76 } | |
| 77 } | |
| 78 | |
| 79 clonalityFrame = PRODF | |
| 80 | |
| 81 #remove duplicates based on the clonaltype | |
| 82 if(clonaltype != "none"){ | |
| 83 clonaltype = paste(clonaltype, ",Sample", sep="") #add sample column to clonaltype, unique within samples | |
| 84 PRODF$clonaltype = do.call(paste, c(PRODF[unlist(strsplit(clonaltype, ","))], sep = ":")) | |
| 85 PRODF = PRODF[!duplicated(PRODF$clonaltype), ] | |
| 86 | |
| 87 UNPROD$clonaltype = do.call(paste, c(UNPROD[unlist(strsplit(clonaltype, ","))], sep = ":")) | |
| 88 UNPROD = UNPROD[!duplicated(UNPROD$clonaltype), ] | |
| 89 | |
| 90 #again for clonalityFrame but with sample+replicate | |
| 91 clonalityFrame$clonaltype = do.call(paste, c(clonalityFrame[unlist(strsplit(clonaltype, ","))], sep = ":")) | |
| 92 clonalityFrame$clonality_clonaltype = do.call(paste, c(clonalityFrame[unlist(strsplit(paste(clonaltype, ",Replicate", sep=""), ","))], sep = ":")) | |
| 93 clonalityFrame = clonalityFrame[!duplicated(clonalityFrame$clonality_clonaltype), ] | |
| 94 } | |
| 95 | |
| 96 PRODF$freq = 1 | |
| 97 | |
| 98 if(any(grepl(pattern="_", x=PRODF$ID))){ #the frequency can be stored in the ID with the pattern ".*_freq_.*" | |
| 99 PRODF$freq = gsub("^[0-9]+_", "", PRODF$ID) | |
| 100 PRODF$freq = gsub("_.*", "", PRODF$freq) | |
| 101 PRODF$freq = as.numeric(PRODF$freq) | |
| 102 if(any(is.na(PRODF$freq))){ #if there was an "_" in the ID, but not the frequency, go back to frequency of 1 for every sequence | |
| 103 PRODF$freq = 1 | |
| 104 } | |
| 105 } | |
| 106 | |
| 107 | |
| 108 | |
| 109 #write the complete dataset that is left over, will be the input if 'none' for clonaltype and 'no' for filterproductive | |
| 110 write.table(PRODF, "allUnique.txt", sep=",",quote=F,row.names=F,col.names=T) | |
| 111 write.table(PRODF, "allUnique.csv", sep="\t",quote=F,row.names=F,col.names=T) | |
| 112 write.table(UNPROD, "allUnproductive.csv", sep=",",quote=F,row.names=F,col.names=T) | |
| 113 | |
| 114 #write the samples to a file | |
| 115 sampleFile <- file("samples.txt") | |
| 116 un = unique(inputdata$Sample) | |
| 117 un = paste(un, sep="\n") | |
| 118 writeLines(un, sampleFile) | |
| 119 close(sampleFile) | |
| 120 | |
| 121 # ---------------------- Counting the productive/unproductive and unique sequences ---------------------- | |
| 122 | |
| 123 print("Report Clonality - counting productive/unproductive/unique") | |
| 124 | |
| 125 if(!("Functionality" %in% inputdata)){ #add a functionality column to the igblast data | |
| 126 inputdata$Functionality = "unproductive" | |
| 127 search = (inputdata$VDJ.Frame != "In-frame with stop codon" & inputdata$VDJ.Frame != "Out-of-frame" & inputdata$CDR3.Found.How != "NOT_FOUND") | |
| 128 if(sum(search) > 0){ | |
| 129 inputdata[search,]$Functionality = "productive" | |
| 130 } | |
| 131 } | |
| 132 | |
| 133 inputdata.dt = data.table(inputdata) #for speed | |
| 134 | |
| 135 if(clonaltype == "none"){ | |
| 136 ct = c("clonaltype") | |
| 137 } | |
| 138 | |
| 139 inputdata.dt$samples_replicates = paste(inputdata.dt$Sample, inputdata.dt$Replicate, sep="_") | |
| 140 samples_replicates = c(unique(inputdata.dt$samples_replicates), unique(as.character(inputdata.dt$Sample))) | |
| 141 frequency_table = data.frame(ID = samples_replicates[order(samples_replicates)]) | |
| 142 | |
| 143 | |
| 144 sample_productive_count = inputdata.dt[, list(All=.N, | |
| 145 Productive = nrow(.SD[.SD$Functionality == "productive" | .SD$Functionality == "productive (see comment)",]), | |
| 146 perc_prod = 1, | |
| 147 Productive_unique = nrow(.SD[.SD$Functionality == "productive" | .SD$Functionality == "productive (see comment)",list(count=.N),by=ct]), | |
| 148 perc_prod_un = 1, | |
| 149 Unproductive= nrow(.SD[.SD$Functionality != "productive" & .SD$Functionality != "productive (see comment)",]), | |
| 150 perc_unprod = 1, | |
| 151 Unproductive_unique =nrow(.SD[.SD$Functionality != "productive" & .SD$Functionality != "productive (see comment)",list(count=.N),by=ct]), | |
| 152 perc_unprod_un = 1), | |
| 153 by=c("Sample")] | |
| 154 | |
| 155 sample_productive_count$perc_prod = round(sample_productive_count$Productive / sample_productive_count$All * 100) | |
| 156 sample_productive_count$perc_prod_un = round(sample_productive_count$Productive_unique / sample_productive_count$All * 100) | |
| 157 | |
| 158 sample_productive_count$perc_unprod = round(sample_productive_count$Unproductive / sample_productive_count$All * 100) | |
| 159 sample_productive_count$perc_unprod_un = round(sample_productive_count$Unproductive_unique / sample_productive_count$All * 100) | |
| 160 | |
| 161 sample_replicate_productive_count = inputdata.dt[, list(All=.N, | |
| 162 Productive = nrow(.SD[.SD$Functionality == "productive" | .SD$Functionality == "productive (see comment)",]), | |
| 163 perc_prod = 1, | |
| 164 Productive_unique = nrow(.SD[.SD$Functionality == "productive" | .SD$Functionality == "productive (see comment)",list(count=.N),by=ct]), | |
| 165 perc_prod_un = 1, | |
| 166 Unproductive= nrow(.SD[.SD$Functionality != "productive" & .SD$Functionality != "productive (see comment)",]), | |
| 167 perc_unprod = 1, | |
| 168 Unproductive_unique =nrow(.SD[.SD$Functionality != "productive" & .SD$Functionality != "productive (see comment)",list(count=.N),by=ct]), | |
| 169 perc_unprod_un = 1), | |
| 170 by=c("samples_replicates")] | |
| 171 | |
| 172 sample_replicate_productive_count$perc_prod = round(sample_replicate_productive_count$Productive / sample_replicate_productive_count$All * 100) | |
| 173 sample_replicate_productive_count$perc_prod_un = round(sample_replicate_productive_count$Productive_unique / sample_replicate_productive_count$All * 100) | |
| 174 | |
| 175 sample_replicate_productive_count$perc_unprod = round(sample_replicate_productive_count$Unproductive / sample_replicate_productive_count$All * 100) | |
| 176 sample_replicate_productive_count$perc_unprod_un = round(sample_replicate_productive_count$Unproductive_unique / sample_replicate_productive_count$All * 100) | |
| 177 | |
| 178 setnames(sample_replicate_productive_count, colnames(sample_productive_count)) | |
| 179 | |
| 180 counts = rbind(sample_replicate_productive_count, sample_productive_count) | |
| 181 counts = counts[order(counts$Sample),] | |
| 182 | |
| 183 write.table(x=counts, file="productive_counting.txt", sep=",",quote=F,row.names=F,col.names=F) | |
| 184 | |
| 185 # ---------------------- Frequency calculation for V, D and J ---------------------- | |
| 186 | |
| 187 print("Report Clonality - frequency calculation V, D and J") | |
| 188 | |
| 189 PRODFV = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.V.Gene")]) | |
| 190 Total = ddply(PRODFV, .(Sample), function(x) data.frame(Total = sum(x$Length))) | |
| 191 PRODFV = merge(PRODFV, Total, by.x='Sample', by.y='Sample', all.x=TRUE) | |
| 192 PRODFV = ddply(PRODFV, c("Sample", "Top.V.Gene"), summarise, relFreq= (Length*100 / Total)) | |
| 193 | |
| 194 PRODFD = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.D.Gene")]) | |
| 195 Total = ddply(PRODFD, .(Sample), function(x) data.frame(Total = sum(x$Length))) | |
| 196 PRODFD = merge(PRODFD, Total, by.x='Sample', by.y='Sample', all.x=TRUE) | |
| 197 PRODFD = ddply(PRODFD, c("Sample", "Top.D.Gene"), summarise, relFreq= (Length*100 / Total)) | |
| 198 | |
| 199 PRODFJ = data.frame(data.table(PRODF)[, list(Length=sum(freq)), by=c("Sample", "Top.J.Gene")]) | |
| 200 Total = ddply(PRODFJ, .(Sample), function(x) data.frame(Total = sum(x$Length))) | |
| 201 PRODFJ = merge(PRODFJ, Total, by.x='Sample', by.y='Sample', all.x=TRUE) | |
| 202 PRODFJ = ddply(PRODFJ, c("Sample", "Top.J.Gene"), summarise, relFreq= (Length*100 / Total)) | |
| 203 | |
| 204 # ---------------------- Setting up the gene names for the different species/loci ---------------------- | |
| 205 | |
| 206 print("Report Clonality - getting genes for species/loci") | |
| 207 | |
| 208 Vchain = "" | |
| 209 Dchain = "" | |
| 210 Jchain = "" | |
| 211 | |
| 212 if(species == "custom"){ | |
| 213 print("Custom genes: ") | |
| 214 splt = unlist(strsplit(locus, ";")) | |
| 215 print(paste("V:", splt[1])) | |
| 216 print(paste("D:", splt[2])) | |
| 217 print(paste("J:", splt[3])) | |
| 218 | |
| 219 Vchain = unlist(strsplit(splt[1], ",")) | |
| 220 Vchain = data.frame(v.name = Vchain, chr.orderV = 1:length(Vchain)) | |
| 221 | |
| 222 Dchain = unlist(strsplit(splt[2], ",")) | |
| 223 if(length(Dchain) > 0){ | |
| 224 Dchain = data.frame(v.name = Dchain, chr.orderD = 1:length(Dchain)) | |
| 225 } else { | |
| 226 Dchain = data.frame(v.name = character(0), chr.orderD = numeric(0)) | |
| 227 } | |
| 228 | |
| 229 Jchain = unlist(strsplit(splt[3], ",")) | |
| 230 Jchain = data.frame(v.name = Jchain, chr.orderJ = 1:length(Jchain)) | |
| 231 | |
| 232 } else { | |
| 233 genes = read.table("genes.txt", sep="\t", header=TRUE, fill=T, comment.char="") | |
| 234 | |
| 235 Vchain = genes[grepl(species, genes$Species) & genes$locus == locus & genes$region == "V",c("IMGT.GENE.DB", "chr.order")] | |
| 236 colnames(Vchain) = c("v.name", "chr.orderV") | |
| 237 Dchain = genes[grepl(species, genes$Species) & genes$locus == locus & genes$region == "D",c("IMGT.GENE.DB", "chr.order")] | |
| 238 colnames(Dchain) = c("v.name", "chr.orderD") | |
| 239 Jchain = genes[grepl(species, genes$Species) & genes$locus == locus & genes$region == "J",c("IMGT.GENE.DB", "chr.order")] | |
| 240 colnames(Jchain) = c("v.name", "chr.orderJ") | |
| 241 } | |
| 242 useD = TRUE | |
| 243 if(nrow(Dchain) == 0){ | |
| 244 useD = FALSE | |
| 245 cat("No D Genes in this species/locus") | |
| 246 } | |
| 247 print(paste(nrow(Vchain), "genes in V")) | |
| 248 print(paste(nrow(Dchain), "genes in D")) | |
| 249 print(paste(nrow(Jchain), "genes in J")) | |
| 250 | |
| 251 # ---------------------- merge with the frequency count ---------------------- | |
| 252 | |
| 253 PRODFV = merge(PRODFV, Vchain, by.x='Top.V.Gene', by.y='v.name', all.x=TRUE) | |
| 254 | |
| 255 PRODFD = merge(PRODFD, Dchain, by.x='Top.D.Gene', by.y='v.name', all.x=TRUE) | |
| 256 | |
| 257 PRODFJ = merge(PRODFJ, Jchain, by.x='Top.J.Gene', by.y='v.name', all.x=TRUE) | |
| 258 | |
| 259 # ---------------------- Create the V, D and J frequency plots and write the data.frame for every plot to a file ---------------------- | |
| 260 | |
| 261 print("Report Clonality - V, D and J frequency plots") | |
| 262 | |
| 263 pV = ggplot(PRODFV) | |
| 264 pV = pV + geom_bar( aes( x=factor(reorder(Top.V.Gene, chr.orderV)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) | |
| 265 pV = pV + xlab("Summary of V gene") + ylab("Frequency") + ggtitle("Relative frequency of V gene usage") | |
| 266 write.table(x=PRODFV, file="VFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | |
| 267 | |
| 268 png("VPlot.png",width = 1280, height = 720) | |
| 269 pV | |
| 270 dev.off(); | |
| 271 | |
| 272 if(useD){ | |
| 273 pD = ggplot(PRODFD) | |
| 274 pD = pD + geom_bar( aes( x=factor(reorder(Top.D.Gene, chr.orderD)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) | |
| 275 pD = pD + xlab("Summary of D gene") + ylab("Frequency") + ggtitle("Relative frequency of D gene usage") | |
| 276 write.table(x=PRODFD, file="DFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | |
| 277 | |
| 278 png("DPlot.png",width = 800, height = 600) | |
| 279 print(pD) | |
| 280 dev.off(); | |
| 281 } | |
| 282 | |
| 283 pJ = ggplot(PRODFJ) | |
| 284 pJ = pJ + geom_bar( aes( x=factor(reorder(Top.J.Gene, chr.orderJ)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) | |
| 285 pJ = pJ + xlab("Summary of J gene") + ylab("Frequency") + ggtitle("Relative frequency of J gene usage") | |
| 286 write.table(x=PRODFJ, file="JFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | |
| 287 | |
| 288 png("JPlot.png",width = 800, height = 600) | |
| 289 pJ | |
| 290 dev.off(); | |
| 291 | |
| 292 pJ = ggplot(PRODFJ) | |
| 293 pJ = pJ + geom_bar( aes( x=factor(reorder(Top.J.Gene, chr.orderJ)), y=relFreq, fill=Sample), stat='identity', position="dodge") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) | |
| 294 pJ = pJ + xlab("Summary of J gene") + ylab("Frequency") + ggtitle("Relative frequency of J gene usage") | |
| 295 write.table(x=PRODFJ, file="JFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | |
| 296 | |
| 297 png("JPlot.png",width = 800, height = 600) | |
| 298 pJ | |
| 299 dev.off(); | |
| 300 | |
| 301 # ---------------------- Now the frequency plots of the V, D and J families ---------------------- | |
| 302 | |
| 303 print("Report Clonality - V, D and J family plots") | |
| 304 | |
| 305 VGenes = PRODF[,c("Sample", "Top.V.Gene")] | |
| 306 VGenes$Top.V.Gene = gsub("-.*", "", VGenes$Top.V.Gene) | |
| 307 VGenes = data.frame(data.table(VGenes)[, list(Count=.N), by=c("Sample", "Top.V.Gene")]) | |
| 308 TotalPerSample = data.frame(data.table(VGenes)[, list(total=sum(.SD$Count)), by=Sample]) | |
| 309 VGenes = merge(VGenes, TotalPerSample, by="Sample") | |
| 310 VGenes$Frequency = VGenes$Count * 100 / VGenes$total | |
| 311 VPlot = ggplot(VGenes) | |
| 312 VPlot = VPlot + geom_bar(aes( x = Top.V.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
| 313 ggtitle("Distribution of V gene families") + | |
| 314 ylab("Percentage of sequences") | |
| 315 png("VFPlot.png") | |
| 316 VPlot | |
| 317 dev.off(); | |
| 318 write.table(x=VGenes, file="VFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | |
| 319 | |
| 320 if(useD){ | |
| 321 DGenes = PRODF[,c("Sample", "Top.D.Gene")] | |
| 322 DGenes$Top.D.Gene = gsub("-.*", "", DGenes$Top.D.Gene) | |
| 323 DGenes = data.frame(data.table(DGenes)[, list(Count=.N), by=c("Sample", "Top.D.Gene")]) | |
| 324 TotalPerSample = data.frame(data.table(DGenes)[, list(total=sum(.SD$Count)), by=Sample]) | |
| 325 DGenes = merge(DGenes, TotalPerSample, by="Sample") | |
| 326 DGenes$Frequency = DGenes$Count * 100 / DGenes$total | |
| 327 DPlot = ggplot(DGenes) | |
| 328 DPlot = DPlot + geom_bar(aes( x = Top.D.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
| 329 ggtitle("Distribution of D gene families") + | |
| 330 ylab("Percentage of sequences") | |
| 331 png("DFPlot.png") | |
| 332 print(DPlot) | |
| 333 dev.off(); | |
| 334 write.table(x=DGenes, file="DFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | |
| 335 } | |
| 336 | |
| 337 JGenes = PRODF[,c("Sample", "Top.J.Gene")] | |
| 338 JGenes$Top.J.Gene = gsub("-.*", "", JGenes$Top.J.Gene) | |
| 339 JGenes = data.frame(data.table(JGenes)[, list(Count=.N), by=c("Sample", "Top.J.Gene")]) | |
| 340 TotalPerSample = data.frame(data.table(JGenes)[, list(total=sum(.SD$Count)), by=Sample]) | |
| 341 JGenes = merge(JGenes, TotalPerSample, by="Sample") | |
| 342 JGenes$Frequency = JGenes$Count * 100 / JGenes$total | |
| 343 JPlot = ggplot(JGenes) | |
| 344 JPlot = JPlot + geom_bar(aes( x = Top.J.Gene, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
| 345 ggtitle("Distribution of J gene families") + | |
| 346 ylab("Percentage of sequences") | |
| 347 png("JFPlot.png") | |
| 348 JPlot | |
| 349 dev.off(); | |
| 350 write.table(x=JGenes, file="JFFrequency.csv", sep=",",quote=F,row.names=F,col.names=T) | |
| 351 | |
| 352 # ---------------------- Plotting the cdr3 length ---------------------- | |
| 353 | |
| 354 print("Report Clonality - CDR3 length plot") | |
| 355 | |
| 356 CDR3Length = data.frame(data.table(PRODF)[, list(Count=.N), by=c("Sample", "CDR3.Length.DNA")]) | |
| 357 TotalPerSample = data.frame(data.table(CDR3Length)[, list(total=sum(.SD$Count)), by=Sample]) | |
| 358 CDR3Length = merge(CDR3Length, TotalPerSample, by="Sample") | |
| 359 CDR3Length$Frequency = CDR3Length$Count * 100 / CDR3Length$total | |
| 360 CDR3LengthPlot = ggplot(CDR3Length) | |
| 361 CDR3LengthPlot = CDR3LengthPlot + geom_bar(aes( x = CDR3.Length.DNA, y = Frequency, fill = Sample), stat='identity', position='dodge' ) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
| 362 ggtitle("Length distribution of CDR3") + | |
| 363 xlab("CDR3 Length") + | |
| 364 ylab("Percentage of sequences") | |
| 365 png("CDR3LengthPlot.png",width = 1280, height = 720) | |
| 366 CDR3LengthPlot | |
| 367 dev.off() | |
| 368 write.table(x=CDR3Length, file="CDR3LengthPlot.csv", sep=",",quote=F,row.names=F,col.names=T) | |
| 369 | |
| 370 # ---------------------- Plot the heatmaps ---------------------- | |
| 371 | |
| 372 #get the reverse order for the V and D genes | |
| 373 revVchain = Vchain | |
| 374 revDchain = Dchain | |
| 375 revVchain$chr.orderV = rev(revVchain$chr.orderV) | |
| 376 revDchain$chr.orderD = rev(revDchain$chr.orderD) | |
| 377 | |
| 378 if(useD){ | |
| 379 print("Report Clonality - Heatmaps VD") | |
| 380 plotVD <- function(dat){ | |
| 381 if(length(dat[,1]) == 0){ | |
| 382 return() | |
| 383 } | |
| 384 img = ggplot() + | |
| 385 geom_tile(data=dat, aes(x=factor(reorder(Top.D.Gene, chr.orderD)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + | |
| 386 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
| 387 scale_fill_gradient(low="gold", high="blue", na.value="white") + | |
| 388 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | |
| 389 xlab("D genes") + | |
| 390 ylab("V Genes") | |
| 391 | |
| 392 png(paste("HeatmapVD_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Dchain$v.name)), height=100+(15*length(Vchain$v.name))) | |
| 393 print(img) | |
| 394 dev.off() | |
| 395 write.table(x=acast(dat, Top.V.Gene~Top.D.Gene, value.var="Length"), file=paste("HeatmapVD_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA) | |
| 396 } | |
| 397 | |
| 398 VandDCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.D.Gene", "Sample")]) | |
| 399 | |
| 400 VandDCount$l = log(VandDCount$Length) | |
| 401 maxVD = data.frame(data.table(VandDCount)[, list(max=max(l)), by=c("Sample")]) | |
| 402 VandDCount = merge(VandDCount, maxVD, by.x="Sample", by.y="Sample", all.x=T) | |
| 403 VandDCount$relLength = VandDCount$l / VandDCount$max | |
| 404 | |
| 405 cartegianProductVD = expand.grid(Top.V.Gene = Vchain$v.name, Top.D.Gene = Dchain$v.name, Sample = unique(inputdata$Sample)) | |
| 406 | |
| 407 completeVD = merge(VandDCount, cartegianProductVD, all.y=TRUE) | |
| 408 completeVD = merge(completeVD, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) | |
| 409 completeVD = merge(completeVD, Dchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) | |
| 410 | |
| 411 fltr = is.nan(completeVD$relLength) | |
| 412 if(any(fltr)){ | |
| 413 completeVD[fltr,"relLength"] = 1 | |
| 414 } | |
| 415 | |
| 416 VDList = split(completeVD, f=completeVD[,"Sample"]) | |
| 417 lapply(VDList, FUN=plotVD) | |
| 418 } | |
| 419 | |
| 420 print("Report Clonality - Heatmaps VJ") | |
| 421 | |
| 422 plotVJ <- function(dat){ | |
| 423 if(length(dat[,1]) == 0){ | |
| 424 return() | |
| 425 } | |
| 426 cat(paste(unique(dat[3])[1,1])) | |
| 427 img = ggplot() + | |
| 428 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.V.Gene, chr.orderV)), fill=relLength)) + | |
| 429 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
| 430 scale_fill_gradient(low="gold", high="blue", na.value="white") + | |
| 431 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | |
| 432 xlab("J genes") + | |
| 433 ylab("V Genes") | |
| 434 | |
| 435 png(paste("HeatmapVJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Vchain$v.name))) | |
| 436 print(img) | |
| 437 dev.off() | |
| 438 write.table(x=acast(dat, Top.V.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapVJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA) | |
| 439 } | |
| 440 | |
| 441 VandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.V.Gene", "Top.J.Gene", "Sample")]) | |
| 442 | |
| 443 VandJCount$l = log(VandJCount$Length) | |
| 444 maxVJ = data.frame(data.table(VandJCount)[, list(max=max(l)), by=c("Sample")]) | |
| 445 VandJCount = merge(VandJCount, maxVJ, by.x="Sample", by.y="Sample", all.x=T) | |
| 446 VandJCount$relLength = VandJCount$l / VandJCount$max | |
| 447 | |
| 448 cartegianProductVJ = expand.grid(Top.V.Gene = Vchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(inputdata$Sample)) | |
| 449 | |
| 450 completeVJ = merge(VandJCount, cartegianProductVJ, all.y=TRUE) | |
| 451 completeVJ = merge(completeVJ, revVchain, by.x="Top.V.Gene", by.y="v.name", all.x=TRUE) | |
| 452 completeVJ = merge(completeVJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) | |
| 453 | |
| 454 fltr = is.nan(completeVJ$relLength) | |
| 455 if(any(fltr)){ | |
| 456 completeVJ[fltr,"relLength"] = 1 | |
| 457 } | |
| 458 | |
| 459 VJList = split(completeVJ, f=completeVJ[,"Sample"]) | |
| 460 lapply(VJList, FUN=plotVJ) | |
| 461 | |
| 462 | |
| 463 | |
| 464 if(useD){ | |
| 465 print("Report Clonality - Heatmaps DJ") | |
| 466 plotDJ <- function(dat){ | |
| 467 if(length(dat[,1]) == 0){ | |
| 468 return() | |
| 469 } | |
| 470 img = ggplot() + | |
| 471 geom_tile(data=dat, aes(x=factor(reorder(Top.J.Gene, chr.orderJ)), y=factor(reorder(Top.D.Gene, chr.orderD)), fill=relLength)) + | |
| 472 theme(axis.text.x = element_text(angle = 90, hjust = 1)) + | |
| 473 scale_fill_gradient(low="gold", high="blue", na.value="white") + | |
| 474 ggtitle(paste(unique(dat$Sample), " (N=" , sum(dat$Length, na.rm=T) ,")", sep="")) + | |
| 475 xlab("J genes") + | |
| 476 ylab("D Genes") | |
| 477 | |
| 478 png(paste("HeatmapDJ_", unique(dat[3])[1,1] , ".png", sep=""), width=150+(15*length(Jchain$v.name)), height=100+(15*length(Dchain$v.name))) | |
| 479 print(img) | |
| 480 dev.off() | |
| 481 write.table(x=acast(dat, Top.D.Gene~Top.J.Gene, value.var="Length"), file=paste("HeatmapDJ_", unique(dat[3])[1,1], ".csv", sep=""), sep=",",quote=F,row.names=T,col.names=NA) | |
| 482 } | |
| 483 | |
| 484 | |
| 485 DandJCount = data.frame(data.table(PRODF)[, list(Length=.N), by=c("Top.D.Gene", "Top.J.Gene", "Sample")]) | |
| 486 | |
| 487 DandJCount$l = log(DandJCount$Length) | |
| 488 maxDJ = data.frame(data.table(DandJCount)[, list(max=max(l)), by=c("Sample")]) | |
| 489 DandJCount = merge(DandJCount, maxDJ, by.x="Sample", by.y="Sample", all.x=T) | |
| 490 DandJCount$relLength = DandJCount$l / DandJCount$max | |
| 491 | |
| 492 cartegianProductDJ = expand.grid(Top.D.Gene = Dchain$v.name, Top.J.Gene = Jchain$v.name, Sample = unique(inputdata$Sample)) | |
| 493 | |
| 494 completeDJ = merge(DandJCount, cartegianProductDJ, all.y=TRUE) | |
| 495 completeDJ = merge(completeDJ, revDchain, by.x="Top.D.Gene", by.y="v.name", all.x=TRUE) | |
| 496 completeDJ = merge(completeDJ, Jchain, by.x="Top.J.Gene", by.y="v.name", all.x=TRUE) | |
| 497 | |
| 498 fltr = is.nan(completeDJ$relLength) | |
| 499 if(any(fltr)){ | |
| 500 completeDJ[fltr, "relLength"] = 1 | |
| 501 } | |
| 502 | |
| 503 DJList = split(completeDJ, f=completeDJ[,"Sample"]) | |
| 504 lapply(DJList, FUN=plotDJ) | |
| 505 } | |
| 506 | |
| 507 | |
| 508 # ---------------------- output tables for the circos plots ---------------------- | |
| 509 | |
| 510 print("Report Clonality - Circos data") | |
| 511 | |
| 512 for(smpl in unique(PRODF$Sample)){ | |
| 513 PRODF.sample = PRODF[PRODF$Sample == smpl,] | |
| 514 | |
| 515 fltr = PRODF.sample$Top.V.Gene == "" | |
| 516 if(any(fltr, na.rm=T)){ | |
| 517 PRODF.sample[fltr, "Top.V.Gene"] = "NA" | |
| 518 } | |
| 519 | |
| 520 fltr = PRODF.sample$Top.D.Gene == "" | |
| 521 if(any(fltr, na.rm=T)){ | |
| 522 PRODF.sample[fltr, "Top.D.Gene"] = "NA" | |
| 523 } | |
| 524 | |
| 525 fltr = PRODF.sample$Top.J.Gene == "" | |
| 526 if(any(fltr, na.rm=T)){ | |
| 527 PRODF.sample[fltr, "Top.J.Gene"] = "NA" | |
| 528 } | |
| 529 | |
| 530 v.d = table(PRODF.sample$Top.V.Gene, PRODF.sample$Top.D.Gene) | |
| 531 v.j = table(PRODF.sample$Top.V.Gene, PRODF.sample$Top.J.Gene) | |
| 532 d.j = table(PRODF.sample$Top.D.Gene, PRODF.sample$Top.J.Gene) | |
| 533 | |
| 534 write.table(v.d, file=paste(smpl, "_VD_circos.txt", sep=""), sep="\t", quote=F, row.names=T, col.names=NA) | |
| 535 write.table(v.j, file=paste(smpl, "_VJ_circos.txt", sep=""), sep="\t", quote=F, row.names=T, col.names=NA) | |
| 536 write.table(d.j, file=paste(smpl, "_DJ_circos.txt", sep=""), sep="\t", quote=F, row.names=T, col.names=NA) | |
| 537 } | |
| 538 | |
| 539 # ---------------------- calculating the clonality score ---------------------- | |
| 540 | |
| 541 if("Replicate" %in% colnames(inputdata)) #can only calculate clonality score when replicate information is available | |
| 542 { | |
| 543 print("Report Clonality - Clonality") | |
| 544 if(clonality_method == "boyd"){ | |
| 545 samples = split(clonalityFrame, clonalityFrame$Sample, drop=T) | |
| 546 | |
| 547 for (sample in samples){ | |
| 548 res = data.frame(paste=character(0)) | |
| 549 sample_id = unique(sample$Sample)[[1]] | |
| 550 for(replicate in unique(sample$Replicate)){ | |
| 551 tmp = sample[sample$Replicate == replicate,] | |
| 552 clone_table = data.frame(table(tmp$clonaltype)) | |
| 553 clone_col_name = paste("V", replicate, sep="") | |
| 554 colnames(clone_table) = c("paste", clone_col_name) | |
| 555 res = merge(res, clone_table, by="paste", all=T) | |
| 556 } | |
| 557 | |
| 558 res[is.na(res)] = 0 | |
| 559 infer.result = infer.clonality(as.matrix(res[,2:ncol(res)])) | |
| 560 | |
| 561 write.table(data.table(infer.result[[12]]), file=paste("lymphclon_clonality_", sample_id, ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=F) | |
| 562 | |
| 563 res$type = rowSums(res[,2:ncol(res)]) | |
| 564 | |
| 565 coincidence.table = data.frame(table(res$type)) | |
| 566 colnames(coincidence.table) = c("Coincidence Type", "Raw Coincidence Freq") | |
| 567 write.table(coincidence.table, file=paste("lymphclon_coincidences_", sample_id, ".csv", sep=""), sep=",",quote=F,row.names=F,col.names=T) | |
| 568 } | |
| 569 } else { | |
| 570 write.table(clonalityFrame, "clonalityComplete.csv", sep=",",quote=F,row.names=F,col.names=T) | |
| 571 | |
| 572 clonalFreq = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "clonaltype")]) | |
| 573 clonalFreqCount = data.frame(data.table(clonalFreq)[, list(Count=.N), by=c("Sample", "Type")]) | |
| 574 clonalFreqCount$realCount = clonalFreqCount$Type * clonalFreqCount$Count | |
| 575 clonalSum = data.frame(data.table(clonalFreqCount)[, list(Reads=sum(realCount)), by=c("Sample")]) | |
| 576 clonalFreqCount = merge(clonalFreqCount, clonalSum, by.x="Sample", by.y="Sample") | |
| 577 | |
| 578 ct = c('Type\tWeight\n2\t1\n3\t3\n4\t6\n5\t10\n6\t15') | |
| 579 tcct = textConnection(ct) | |
| 580 CT = read.table(tcct, sep="\t", header=TRUE) | |
| 581 close(tcct) | |
| 582 clonalFreqCount = merge(clonalFreqCount, CT, by.x="Type", by.y="Type", all.x=T) | |
| 583 clonalFreqCount$WeightedCount = clonalFreqCount$Count * clonalFreqCount$Weight | |
| 584 | |
| 585 ReplicateReads = data.frame(data.table(clonalityFrame)[, list(Type=.N), by=c("Sample", "Replicate", "clonaltype")]) | |
| 586 ReplicateReads = data.frame(data.table(ReplicateReads)[, list(Reads=.N), by=c("Sample", "Replicate")]) | |
| 587 clonalFreqCount$Reads = as.numeric(clonalFreqCount$Reads) | |
| 588 ReplicateReads$Reads = as.numeric(ReplicateReads$Reads) | |
| 589 ReplicateReads$squared = as.numeric(ReplicateReads$Reads * ReplicateReads$Reads) | |
| 590 | |
| 591 ReplicatePrint <- function(dat){ | |
| 592 write.table(dat[-1], paste("ReplicateReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
| 593 } | |
| 594 | |
| 595 ReplicateSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) | |
| 596 lapply(ReplicateSplit, FUN=ReplicatePrint) | |
| 597 | |
| 598 ReplicateReads = data.frame(data.table(ReplicateReads)[, list(ReadsSum=sum(as.numeric(Reads)), ReadsSquaredSum=sum(as.numeric(squared))), by=c("Sample")]) | |
| 599 clonalFreqCount = merge(clonalFreqCount, ReplicateReads, by.x="Sample", by.y="Sample", all.x=T) | |
| 600 | |
| 601 ReplicateSumPrint <- function(dat){ | |
| 602 write.table(dat[-1], paste("ReplicateSumReads_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
| 603 } | |
| 604 | |
| 605 ReplicateSumSplit = split(ReplicateReads, f=ReplicateReads[,"Sample"]) | |
| 606 lapply(ReplicateSumSplit, FUN=ReplicateSumPrint) | |
| 607 | |
| 608 clonalFreqCountSum = data.frame(data.table(clonalFreqCount)[, list(Numerator=sum(WeightedCount, na.rm=T)), by=c("Sample")]) | |
| 609 clonalFreqCount = merge(clonalFreqCount, clonalFreqCountSum, by.x="Sample", by.y="Sample", all.x=T) | |
| 610 clonalFreqCount$ReadsSum = as.numeric(clonalFreqCount$ReadsSum) #prevent integer overflow | |
| 611 clonalFreqCount$Denominator = (((clonalFreqCount$ReadsSum * clonalFreqCount$ReadsSum) - clonalFreqCount$ReadsSquaredSum) / 2) | |
| 612 clonalFreqCount$Result = (clonalFreqCount$Numerator + 1) / (clonalFreqCount$Denominator + 1) | |
| 613 | |
| 614 ClonalityScorePrint <- function(dat){ | |
| 615 write.table(dat$Result, paste("ClonalityScore_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
| 616 } | |
| 617 | |
| 618 clonalityScore = clonalFreqCount[c("Sample", "Result")] | |
| 619 clonalityScore = unique(clonalityScore) | |
| 620 | |
| 621 clonalityScoreSplit = split(clonalityScore, f=clonalityScore[,"Sample"]) | |
| 622 lapply(clonalityScoreSplit, FUN=ClonalityScorePrint) | |
| 623 | |
| 624 clonalityOverview = clonalFreqCount[c("Sample", "Type", "Count", "Weight", "WeightedCount")] | |
| 625 | |
| 626 | |
| 627 | |
| 628 ClonalityOverviewPrint <- function(dat){ | |
| 629 write.table(dat[-1], paste("ClonalityOverView_", unique(dat[1])[1,1] , ".csv", sep=""), sep=",",quote=F,na="-",row.names=F,col.names=F) | |
| 630 } | |
| 631 | |
| 632 clonalityOverviewSplit = split(clonalityOverview, f=clonalityOverview$Sample) | |
| 633 lapply(clonalityOverviewSplit, FUN=ClonalityOverviewPrint) | |
| 634 } | |
| 635 } | |
| 636 | |
| 637 imgtcolumns = c("X3V.REGION.trimmed.nt.nb","P3V.nt.nb", "N1.REGION.nt.nb", "P5D.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "P3D.nt.nb", "N2.REGION.nt.nb", "P5J.nt.nb", "X5J.REGION.trimmed.nt.nb", "X3V.REGION.trimmed.nt.nb", "X5D.REGION.trimmed.nt.nb", "X3D.REGION.trimmed.nt.nb", "X5J.REGION.trimmed.nt.nb", "N1.REGION.nt.nb", "N2.REGION.nt.nb", "P3V.nt.nb", "P5D.nt.nb", "P3D.nt.nb", "P5J.nt.nb") | |
| 638 if(all(imgtcolumns %in% colnames(inputdata))) | |
| 639 { | |
| 640 print("found IMGT columns, running junction analysis") | |
| 641 | |
| 642 if(locus %in% c("IGK","IGL", "TRA", "TRG")){ | |
| 643 print("VJ recombination, using N column for junction analysis") | |
| 644 print(names(PRODF)) | |
| 645 print(head(PRODF$N.REGION.nt.nb, 30)) | |
| 646 PRODF$N1.REGION.nt.nb = PRODF$N.REGION.nt.nb | |
| 647 } | |
| 648 | |
| 649 num_median = function(x, na.rm) { as.numeric(median(x, na.rm=na.rm)) } | |
| 650 | |
| 651 newData = data.frame(data.table(PRODF)[,list(unique=.N, | |
| 652 VH.DEL=mean(.SD$X3V.REGION.trimmed.nt.nb, na.rm=T), | |
| 653 P1=mean(.SD$P3V.nt.nb, na.rm=T), | |
| 654 N1=mean(.SD$N1.REGION.nt.nb, na.rm=T), | |
| 655 P2=mean(.SD$P5D.nt.nb, na.rm=T), | |
| 656 DEL.DH=mean(.SD$X5D.REGION.trimmed.nt.nb, na.rm=T), | |
| 657 DH.DEL=mean(.SD$X3D.REGION.trimmed.nt.nb, na.rm=T), | |
| 658 P3=mean(.SD$P3D.nt.nb, na.rm=T), | |
| 659 N2=mean(.SD$N2.REGION.nt.nb, na.rm=T), | |
| 660 P4=mean(.SD$P5J.nt.nb, na.rm=T), | |
| 661 DEL.JH=mean(.SD$X5J.REGION.trimmed.nt.nb, na.rm=T), | |
| 662 Total.Del=( mean(.SD$X3V.REGION.trimmed.nt.nb, na.rm=T) + | |
| 663 mean(.SD$X5D.REGION.trimmed.nt.nb, na.rm=T) + | |
| 664 mean(.SD$X3D.REGION.trimmed.nt.nb, na.rm=T) + | |
| 665 mean(.SD$X5J.REGION.trimmed.nt.nb, na.rm=T)), | |
| 666 | |
| 667 Total.N=( mean(.SD$N1.REGION.nt.nb, na.rm=T) + | |
| 668 mean(.SD$N2.REGION.nt.nb, na.rm=T)), | |
| 669 | |
| 670 Total.P=( mean(.SD$P3V.nt.nb, na.rm=T) + | |
| 671 mean(.SD$P5D.nt.nb, na.rm=T) + | |
| 672 mean(.SD$P3D.nt.nb, na.rm=T) + | |
| 673 mean(.SD$P5J.nt.nb, na.rm=T))), | |
| 674 by=c("Sample")]) | |
| 675 newData[,sapply(newData, is.numeric)] = round(newData[,sapply(newData, is.numeric)],1) | |
| 676 write.table(newData, "junctionAnalysisProd_mean.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F) | |
| 677 | |
| 678 newData = data.frame(data.table(PRODF)[,list(unique=.N, | |
| 679 VH.DEL=num_median(.SD$X3V.REGION.trimmed.nt.nb, na.rm=T), | |
| 680 P1=num_median(.SD$P3V.nt.nb, na.rm=T), | |
| 681 N1=num_median(.SD$N1.REGION.nt.nb, na.rm=T), | |
| 682 P2=num_median(.SD$P5D.nt.nb, na.rm=T), | |
| 683 DEL.DH=num_median(.SD$X5D.REGION.trimmed.nt.nb, na.rm=T), | |
| 684 DH.DEL=num_median(.SD$X3D.REGION.trimmed.nt.nb, na.rm=T), | |
| 685 P3=num_median(.SD$P3D.nt.nb, na.rm=T), | |
| 686 N2=num_median(.SD$N2.REGION.nt.nb, na.rm=T), | |
| 687 P4=num_median(.SD$P5J.nt.nb, na.rm=T), | |
| 688 DEL.JH=num_median(.SD$X5J.REGION.trimmed.nt.nb, na.rm=T), | |
| 689 Total.Del=num_median(c(.SD$X3V.REGION.trimmed.nt.nb, | |
| 690 .SD$X5D.REGION.trimmed.nt.nb, | |
| 691 .SD$X3D.REGION.trimmed.nt.nb, | |
| 692 .SD$X5J.REGION.trimmed.nt.nb), na.rm=T), | |
| 693 Total.N=num_median( c(.SD$N1.REGION.nt.nb, | |
| 694 .SD$N2.REGION.nt.nb), na.rm=T), | |
| 695 Total.P=num_median(c(.SD$P3V.nt.nb, | |
| 696 .SD$P5D.nt.nb, | |
| 697 .SD$P3D.nt.nb, | |
| 698 .SD$P5J.nt.nb), na.rm=T)), | |
| 699 by=c("Sample")]) | |
| 700 newData[,sapply(newData, is.numeric)] = round(newData[,sapply(newData, is.numeric)],1) | |
| 701 write.table(newData, "junctionAnalysisProd_median.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F) | |
| 702 | |
| 703 newData = data.frame(data.table(UNPROD)[,list(unique=.N, | |
| 704 VH.DEL=mean(.SD$X3V.REGION.trimmed.nt.nb, na.rm=T), | |
| 705 P1=mean(.SD$P3V.nt.nb, na.rm=T), | |
| 706 N1=mean(.SD$N1.REGION.nt.nb, na.rm=T), | |
| 707 P2=mean(.SD$P5D.nt.nb, na.rm=T), | |
| 708 DEL.DH=mean(.SD$X5D.REGION.trimmed.nt.nb, na.rm=T), | |
| 709 DH.DEL=mean(.SD$X3D.REGION.trimmed.nt.nb, na.rm=T), | |
| 710 P3=mean(.SD$P3D.nt.nb, na.rm=T), | |
| 711 N2=mean(.SD$N2.REGION.nt.nb, na.rm=T), | |
| 712 P4=mean(.SD$P5J.nt.nb, na.rm=T), | |
| 713 DEL.JH=mean(.SD$X5J.REGION.trimmed.nt.nb, na.rm=T), | |
| 714 Total.Del=(mean(.SD$X3V.REGION.trimmed.nt.nb, na.rm=T) + | |
| 715 mean(.SD$X5D.REGION.trimmed.nt.nb, na.rm=T) + | |
| 716 mean(.SD$X3D.REGION.trimmed.nt.nb, na.rm=T) + | |
| 717 mean(.SD$X5J.REGION.trimmed.nt.nb, na.rm=T)), | |
| 718 Total.N=( mean(.SD$N1.REGION.nt.nb, na.rm=T) + | |
| 719 mean(.SD$N2.REGION.nt.nb, na.rm=T)), | |
| 720 Total.P=( mean(.SD$P3V.nt.nb, na.rm=T) + | |
| 721 mean(.SD$P5D.nt.nb, na.rm=T) + | |
| 722 mean(.SD$P3D.nt.nb, na.rm=T) + | |
| 723 mean(.SD$P5J.nt.nb, na.rm=T))), | |
| 724 by=c("Sample")]) | |
| 725 newData[,sapply(newData, is.numeric)] = round(newData[,sapply(newData, is.numeric)],1) | |
| 726 write.table(newData, "junctionAnalysisUnProd_mean.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F) | |
| 727 | |
| 728 newData = data.frame(data.table(UNPROD)[,list(unique=.N, | |
| 729 VH.DEL=num_median(.SD$X3V.REGION.trimmed.nt.nb, na.rm=T), | |
| 730 P1=num_median(.SD$P3V.nt.nb, na.rm=T), | |
| 731 N1=num_median(.SD$N1.REGION.nt.nb, na.rm=T), | |
| 732 P2=num_median(.SD$P5D.nt.nb, na.rm=T), | |
| 733 DEL.DH=num_median(.SD$X5D.REGION.trimmed.nt.nb, na.rm=T), | |
| 734 DH.DEL=num_median(.SD$X3D.REGION.trimmed.nt.nb, na.rm=T), | |
| 735 P3=num_median(.SD$P3D.nt.nb, na.rm=T), | |
| 736 N2=num_median(.SD$N2.REGION.nt.nb, na.rm=T), | |
| 737 P4=num_median(.SD$P5J.nt.nb, na.rm=T), | |
| 738 DEL.JH=num_median(.SD$X5J.REGION.trimmed.nt.nb, na.rm=T), | |
| 739 Total.Del=num_median(c(.SD$X3V.REGION.trimmed.nt.nb, | |
| 740 .SD$X5D.REGION.trimmed.nt.nb, | |
| 741 .SD$X3D.REGION.trimmed.nt.nb, | |
| 742 .SD$X5J.REGION.trimmed.nt.nb), na.rm=T), | |
| 743 Total.N=num_median( c(.SD$N1.REGION.nt.nb, | |
| 744 .SD$N2.REGION.nt.nb), na.rm=T), | |
| 745 Total.P=num_median(c(.SD$P3V.nt.nb, | |
| 746 .SD$P5D.nt.nb, | |
| 747 .SD$P3D.nt.nb, | |
| 748 .SD$P5J.nt.nb), na.rm=T)), | |
| 749 by=c("Sample")]) | |
| 750 | |
| 751 newData[,sapply(newData, is.numeric)] = round(newData[,sapply(newData, is.numeric)],1) | |
| 752 write.table(newData, "junctionAnalysisUnProd_median.csv" , sep=",",quote=F,na="-",row.names=F,col.names=F) | |
| 753 } | |
| 754 | |
| 755 # ---------------------- AA composition in CDR3 ---------------------- | |
| 756 | |
| 757 AACDR3 = PRODF[,c("Sample", "CDR3.Seq")] | |
| 758 | |
| 759 TotalPerSample = data.frame(data.table(AACDR3)[, list(total=sum(nchar(as.character(.SD$CDR3.Seq)))), by=Sample]) | |
| 760 | |
| 761 AAfreq = list() | |
| 762 | |
| 763 for(i in 1:nrow(TotalPerSample)){ | |
| 764 sample = TotalPerSample$Sample[i] | |
| 765 AAfreq[[i]] = data.frame(table(unlist(strsplit(as.character(AACDR3[AACDR3$Sample == sample,c("CDR3.Seq")]), "")))) | |
| 766 AAfreq[[i]]$Sample = sample | |
| 767 } | |
| 768 | |
| 769 AAfreq = ldply(AAfreq, data.frame) | |
| 770 AAfreq = merge(AAfreq, TotalPerSample, by="Sample", all.x = T) | |
| 771 AAfreq$freq_perc = as.numeric(AAfreq$Freq / AAfreq$total * 100) | |
| 772 | |
| 773 | |
| 774 AAorder = read.table(sep="\t", header=TRUE, text="order.aa\tAA\n1\tR\n2\tK\n3\tN\n4\tD\n5\tQ\n6\tE\n7\tH\n8\tP\n9\tY\n10\tW\n11\tS\n12\tT\n13\tG\n14\tA\n15\tM\n16\tC\n17\tF\n18\tL\n19\tV\n20\tI") | |
| 775 AAfreq = merge(AAfreq, AAorder, by.x='Var1', by.y='AA', all.x=TRUE) | |
| 776 | |
| 777 AAfreq = AAfreq[!is.na(AAfreq$order.aa),] | |
| 778 | |
| 779 AAfreqplot = ggplot(AAfreq) | |
| 780 AAfreqplot = AAfreqplot + geom_bar(aes( x=factor(reorder(Var1, order.aa)), y = freq_perc, fill = Sample), stat='identity', position='dodge' ) | |
| 781 AAfreqplot = AAfreqplot + annotate("rect", xmin = 0.5, xmax = 2.5, ymin = 0, ymax = Inf, fill = "red", alpha = 0.2) | |
| 782 AAfreqplot = AAfreqplot + annotate("rect", xmin = 3.5, xmax = 4.5, ymin = 0, ymax = Inf, fill = "blue", alpha = 0.2) | |
| 783 AAfreqplot = AAfreqplot + annotate("rect", xmin = 5.5, xmax = 6.5, ymin = 0, ymax = Inf, fill = "blue", alpha = 0.2) | |
| 784 AAfreqplot = AAfreqplot + annotate("rect", xmin = 6.5, xmax = 7.5, ymin = 0, ymax = Inf, fill = "red", alpha = 0.2) | |
| 785 AAfreqplot = AAfreqplot + ggtitle("Amino Acid Composition in the CDR3") + xlab("Amino Acid, from Hydrophilic (left) to Hydrophobic (right)") + ylab("Percentage") | |
| 786 | |
| 787 png("AAComposition.png",width = 1280, height = 720) | |
| 788 AAfreqplot | |
| 789 dev.off() | |
| 790 write.table(AAfreq, "AAComposition.csv" , sep=",",quote=F,na="-",row.names=F,col.names=T) | |
| 791 | |
| 792 |
