Mercurial > repos > davidvanzessen > argalaxy_tools
comparison mutation_analysis.r @ 11:0510cf1f7cbc draft
Uploaded
| author | davidvanzessen |
|---|---|
| date | Tue, 04 Aug 2015 09:59:26 -0400 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 10:edbf4fba5fc7 | 11:0510cf1f7cbc |
|---|---|
| 1 args <- commandArgs(trailingOnly = TRUE) | |
| 2 | |
| 3 input = args[1] | |
| 4 genes = unlist(strsplit(args[2], ",")) | |
| 5 outputdir = args[3] | |
| 6 print(args[4]) | |
| 7 include_fr1 = ifelse(args[4] == "yes", T, F) | |
| 8 setwd(outputdir) | |
| 9 | |
| 10 dat = read.table(input, header=T, sep="\t", fill=T, stringsAsFactors=F) | |
| 11 | |
| 12 if(length(dat$Sequence.ID) == 0){ | |
| 13 setwd(outputdir) | |
| 14 result = data.frame(x = rep(0, 5), y = rep(0, 5), z = rep(NA, 5)) | |
| 15 row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C G (%)") | |
| 16 write.table(x=result, file="mutations.txt", sep=",",quote=F,row.names=T,col.names=F) | |
| 17 transitionTable = data.frame(A=rep(0, 4),C=rep(0, 4),G=rep(0, 4),T=rep(0, 4)) | |
| 18 row.names(transitionTable) = c("A", "C", "G", "T") | |
| 19 transitionTable["A","A"] = NA | |
| 20 transitionTable["C","C"] = NA | |
| 21 transitionTable["G","G"] = NA | |
| 22 transitionTable["T","T"] = NA | |
| 23 write.table(x=transitionTable, file="transitions.txt", sep=",",quote=F,row.names=T,col.names=NA) | |
| 24 cat("0", file="n.txt") | |
| 25 stop("No data") | |
| 26 } | |
| 27 | |
| 28 | |
| 29 | |
| 30 cleanup_columns = c("FR1.IMGT.c.a", | |
| 31 "FR2.IMGT.g.t", | |
| 32 "CDR1.IMGT.Nb.of.nucleotides", | |
| 33 "CDR2.IMGT.t.a", | |
| 34 "FR1.IMGT.c.g", | |
| 35 "CDR1.IMGT.c.t", | |
| 36 "FR2.IMGT.a.c", | |
| 37 "FR2.IMGT.Nb.of.mutations", | |
| 38 "FR2.IMGT.g.c", | |
| 39 "FR2.IMGT.a.g", | |
| 40 "FR3.IMGT.t.a", | |
| 41 "FR3.IMGT.t.c", | |
| 42 "FR2.IMGT.g.a", | |
| 43 "FR3.IMGT.c.g", | |
| 44 "FR1.IMGT.Nb.of.mutations", | |
| 45 "CDR1.IMGT.g.a", | |
| 46 "CDR1.IMGT.t.g", | |
| 47 "CDR1.IMGT.g.c", | |
| 48 "CDR2.IMGT.Nb.of.nucleotides", | |
| 49 "FR2.IMGT.a.t", | |
| 50 "CDR1.IMGT.Nb.of.mutations", | |
| 51 "CDR1.IMGT.a.g", | |
| 52 "FR3.IMGT.a.c", | |
| 53 "FR1.IMGT.g.a", | |
| 54 "FR3.IMGT.a.g", | |
| 55 "FR1.IMGT.a.t", | |
| 56 "CDR2.IMGT.a.g", | |
| 57 "CDR2.IMGT.Nb.of.mutations", | |
| 58 "CDR2.IMGT.g.t", | |
| 59 "CDR2.IMGT.a.c", | |
| 60 "CDR1.IMGT.t.c", | |
| 61 "FR3.IMGT.g.c", | |
| 62 "FR1.IMGT.g.t", | |
| 63 "FR3.IMGT.g.t", | |
| 64 "CDR1.IMGT.a.t", | |
| 65 "FR1.IMGT.a.g", | |
| 66 "FR3.IMGT.a.t", | |
| 67 "FR3.IMGT.Nb.of.nucleotides", | |
| 68 "FR2.IMGT.t.c", | |
| 69 "CDR2.IMGT.g.a", | |
| 70 "FR2.IMGT.t.a", | |
| 71 "CDR1.IMGT.t.a", | |
| 72 "FR2.IMGT.t.g", | |
| 73 "FR3.IMGT.t.g", | |
| 74 "FR2.IMGT.Nb.of.nucleotides", | |
| 75 "FR1.IMGT.t.a", | |
| 76 "FR1.IMGT.t.g", | |
| 77 "FR3.IMGT.c.t", | |
| 78 "FR1.IMGT.t.c", | |
| 79 "CDR2.IMGT.a.t", | |
| 80 "FR2.IMGT.c.t", | |
| 81 "CDR1.IMGT.g.t", | |
| 82 "CDR2.IMGT.t.g", | |
| 83 "FR1.IMGT.Nb.of.nucleotides", | |
| 84 "CDR1.IMGT.c.g", | |
| 85 "CDR2.IMGT.t.c", | |
| 86 "FR3.IMGT.g.a", | |
| 87 "CDR1.IMGT.a.c", | |
| 88 "FR2.IMGT.c.a", | |
| 89 "FR3.IMGT.Nb.of.mutations", | |
| 90 "FR2.IMGT.c.g", | |
| 91 "CDR2.IMGT.g.c", | |
| 92 "FR1.IMGT.g.c", | |
| 93 "CDR2.IMGT.c.t", | |
| 94 "FR3.IMGT.c.a", | |
| 95 "CDR1.IMGT.c.a", | |
| 96 "CDR2.IMGT.c.g", | |
| 97 "CDR2.IMGT.c.a", | |
| 98 "FR1.IMGT.c.t") | |
| 99 | |
| 100 for(col in cleanup_columns){ | |
| 101 dat[,col] = gsub("\\(.*\\)", "", dat[,col]) | |
| 102 #dat[dat[,col] == "",] = "0" | |
| 103 dat[,col] = as.numeric(dat[,col]) | |
| 104 dat[is.na(dat[,col]),] = 0 | |
| 105 } | |
| 106 | |
| 107 regions = c("FR1", "CDR1", "FR2", "CDR2", "FR3") | |
| 108 if(!include_fr1){ | |
| 109 regions = c("CDR1", "FR2", "CDR2", "FR3") | |
| 110 } | |
| 111 | |
| 112 sum_by_row = function(x, columns) { sum(as.numeric(x[columns]), na.rm=T) } | |
| 113 | |
| 114 VRegionMutations_columns = paste(regions, ".IMGT.Nb.of.mutations", sep="") | |
| 115 dat$VRegionMutations = apply(dat, FUN=sum_by_row, 1, columns=VRegionMutations_columns) | |
| 116 | |
| 117 VRegionNucleotides_columns = paste(regions, ".IMGT.Nb.of.nucleotides", sep="") | |
| 118 dat$VRegionNucleotides = apply(dat, FUN=sum_by_row, 1, columns=VRegionNucleotides_columns) | |
| 119 | |
| 120 transitionMutations_columns = paste(rep(regions, each=4), c(".IMGT.a.g", ".IMGT.g.a", ".IMGT.c.t", ".IMGT.t.c"), sep="") | |
| 121 dat$transitionMutations = apply(dat, FUN=sum_by_row, 1, columns=transitionMutations_columns) | |
| 122 | |
| 123 transversionMutations_columns = paste(rep(regions, each=8), c(".IMGT.a.c",".IMGT.c.a",".IMGT.a.t",".IMGT.t.a",".IMGT.g.c",".IMGT.c.g",".IMGT.g.t",".IMGT.t.g"), sep="") | |
| 124 dat$transversionMutations = apply(dat, FUN=sum_by_row, 1, columns=transversionMutations_columns) | |
| 125 | |
| 126 | |
| 127 transitionMutationsAtGC_columns = paste(rep(regions, each=2), c(".IMGT.g.a",".IMGT.c.t"), sep="") | |
| 128 dat$transitionMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=transitionMutationsAtGC_columns) | |
| 129 | |
| 130 totalMutationsAtGC_columns = paste(rep(regions, each=6), c(".IMGT.g.a",".IMGT.c.t",".IMGT.c.a",".IMGT.g.c",".IMGT.c.g",".IMGT.g.t"), sep="") | |
| 131 dat$totalMutationsAtGC = apply(dat, FUN=sum_by_row, 1, columns=totalMutationsAtGC_columns) | |
| 132 | |
| 133 FRRegions = regions[grepl("FR", regions)] | |
| 134 CDRRegions = regions[grepl("CDR", regions)] | |
| 135 | |
| 136 FR_silentMutations_columns = paste(FRRegions, ".IMGT.Nb.of.silent.mutations", sep="") | |
| 137 dat$silentMutationsFR = apply(dat, FUN=sum_by_row, 1, columns=FR_silentMutations_columns) | |
| 138 | |
| 139 CDR_silentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.silent.mutations", sep="") | |
| 140 dat$silentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_silentMutations_columns) | |
| 141 | |
| 142 FR_nonSilentMutations_columns = paste(FRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="") | |
| 143 dat$nonSilentMutationsFR = apply(dat, FUN=sum_by_row, 1, columns=FR_nonSilentMutations_columns) | |
| 144 | |
| 145 CDR_nonSilentMutations_columns = paste(CDRRegions, ".IMGT.Nb.of.nonsilent.mutations", sep="") | |
| 146 dat$nonSilentMutationsCDR = apply(dat, FUN=sum_by_row, 1, columns=CDR_nonSilentMutations_columns) | |
| 147 | |
| 148 | |
| 149 setwd(outputdir) | |
| 150 | |
| 151 nts = c("a", "c", "g", "t") | |
| 152 zeros=rep(0, 4) | |
| 153 matrx = matrix(data = 0, ncol=((length(genes) + 1) * 3),nrow=7) | |
| 154 for(i in 1:length(genes)){ | |
| 155 gene = genes[i] | |
| 156 tmp = dat[grepl(paste(".*", gene, ".*", sep=""), dat$best_match),] | |
| 157 if(gene == "."){ | |
| 158 tmp = dat | |
| 159 } | |
| 160 j = i - 1 | |
| 161 x = (j * 3) + 1 | |
| 162 y = (j * 3) + 2 | |
| 163 z = (j * 3) + 3 | |
| 164 matrx[1,x] = sum(tmp$VRegionMutations) | |
| 165 matrx[1,y] = sum(tmp$VRegionNucleotides) | |
| 166 matrx[1,z] = round(matrx[1,x] / matrx[1,y] * 100, digits=1) | |
| 167 matrx[2,x] = sum(tmp$transitionMutations) | |
| 168 matrx[2,y] = sum(tmp$VRegionMutations) | |
| 169 matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1) | |
| 170 matrx[3,x] = sum(tmp$transversionMutations) | |
| 171 matrx[3,y] = sum(tmp$VRegionMutations) | |
| 172 matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1) | |
| 173 matrx[4,x] = sum(tmp$transitionMutationsAtGC) | |
| 174 matrx[4,y] = sum(tmp$totalMutationsAtGC) | |
| 175 matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1) | |
| 176 matrx[5,x] = sum(tmp$totalMutationsAtGC) | |
| 177 matrx[5,y] = sum(tmp$VRegionMutations) | |
| 178 matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1) | |
| 179 matrx[6,x] = sum(tmp$nonSilentMutationsFR) | |
| 180 matrx[6,y] = sum(tmp$silentMutationsFR) | |
| 181 matrx[6,z] = round(matrx[6,x] / matrx[6,y], digits=1) | |
| 182 matrx[7,x] = sum(tmp$nonSilentMutationsCDR) | |
| 183 matrx[7,y] = sum(tmp$silentMutationsCDR) | |
| 184 matrx[7,z] = round(matrx[7,x] / matrx[7,y], digits=1) | |
| 185 | |
| 186 | |
| 187 transitionTable = data.frame(A=zeros,C=zeros,G=zeros,T=zeros) | |
| 188 row.names(transitionTable) = c("A", "C", "G", "T") | |
| 189 transitionTable["A","A"] = NA | |
| 190 transitionTable["C","C"] = NA | |
| 191 transitionTable["G","G"] = NA | |
| 192 transitionTable["T","T"] = NA | |
| 193 | |
| 194 if(nrow(tmp) > 0){ | |
| 195 for(nt1 in nts){ | |
| 196 for(nt2 in nts){ | |
| 197 if(nt1 == nt2){ | |
| 198 next | |
| 199 } | |
| 200 NT1 = LETTERS[letters == nt1] | |
| 201 NT2 = LETTERS[letters == nt2] | |
| 202 FR1 = paste("FR1.IMGT.", nt1, ".", nt2, sep="") | |
| 203 CDR1 = paste("CDR1.IMGT.", nt1, ".", nt2, sep="") | |
| 204 FR2 = paste("FR2.IMGT.", nt1, ".", nt2, sep="") | |
| 205 CDR2 = paste("CDR2.IMGT.", nt1, ".", nt2, sep="") | |
| 206 FR3 = paste("FR3.IMGT.", nt1, ".", nt2, sep="") | |
| 207 if(include_fr1){ | |
| 208 transitionTable[NT1,NT2] = sum(tmp[,c(FR1, CDR1, FR2, CDR2, FR3)]) | |
| 209 } else { | |
| 210 transitionTable[NT1,NT2] = sum(tmp[,c(CDR1, FR2, CDR2, FR3)]) | |
| 211 } | |
| 212 } | |
| 213 } | |
| 214 } | |
| 215 | |
| 216 | |
| 217 write.table(x=transitionTable, file=paste("transitions_", gene ,".txt", sep=""), sep=",",quote=F,row.names=T,col.names=NA) | |
| 218 write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file=paste("matched_", gene ,".txt", sep=""), sep="\t",quote=F,row.names=F,col.names=T) | |
| 219 | |
| 220 cat(matrx[1,x], file=paste(gene, "_value.txt" ,sep="")) | |
| 221 cat(length(tmp$Sequence.ID), file=paste(gene, "_n.txt" ,sep="")) | |
| 222 } | |
| 223 | |
| 224 #again for all of the data | |
| 225 tmp = dat | |
| 226 j = i | |
| 227 x = (j * 3) + 1 | |
| 228 y = (j * 3) + 2 | |
| 229 z = (j * 3) + 3 | |
| 230 matrx[1,x] = sum(tmp$VRegionMutations) | |
| 231 matrx[1,y] = sum(tmp$VRegionNucleotides) | |
| 232 matrx[1,z] = round(matrx[1,x] / matrx[1,y] * 100, digits=1) | |
| 233 matrx[2,x] = sum(tmp$transitionMutations) | |
| 234 matrx[2,y] = sum(tmp$VRegionMutations) | |
| 235 matrx[2,z] = round(matrx[2,x] / matrx[2,y] * 100, digits=1) | |
| 236 matrx[3,x] = sum(tmp$transversionMutations) | |
| 237 matrx[3,y] = sum(tmp$VRegionMutations) | |
| 238 matrx[3,z] = round(matrx[3,x] / matrx[3,y] * 100, digits=1) | |
| 239 matrx[4,x] = sum(tmp$transitionMutationsAtGC) | |
| 240 matrx[4,y] = sum(tmp$totalMutationsAtGC) | |
| 241 matrx[4,z] = round(matrx[4,x] / matrx[4,y] * 100, digits=1) | |
| 242 matrx[5,x] = sum(tmp$totalMutationsAtGC) | |
| 243 matrx[5,y] = sum(tmp$VRegionMutations) | |
| 244 matrx[5,z] = round(matrx[5,x] / matrx[5,y] * 100, digits=1) | |
| 245 matrx[6,x] = sum(tmp$nonSilentMutationsFR) | |
| 246 matrx[6,y] = sum(tmp$silentMutationsFR) | |
| 247 matrx[6,z] = round(matrx[6,x] / matrx[6,y], digits=1) | |
| 248 matrx[7,x] = sum(tmp$nonSilentMutationsCDR) | |
| 249 matrx[7,y] = sum(tmp$silentMutationsCDR) | |
| 250 matrx[7,z] = round(matrx[7,x] / matrx[7,y], digits=1) | |
| 251 | |
| 252 transitionTable = data.frame(A=1:4,C=1:4,G=1:4,T=1:4) | |
| 253 row.names(transitionTable) = c("A", "C", "G", "T") | |
| 254 transitionTable["A","A"] = NA | |
| 255 transitionTable["C","C"] = NA | |
| 256 transitionTable["G","G"] = NA | |
| 257 transitionTable["T","T"] = NA | |
| 258 | |
| 259 | |
| 260 for(nt1 in nts){ | |
| 261 for(nt2 in nts){ | |
| 262 if(nt1 == nt2){ | |
| 263 next | |
| 264 } | |
| 265 NT1 = LETTERS[letters == nt1] | |
| 266 NT2 = LETTERS[letters == nt2] | |
| 267 FR1 = paste("FR1.IMGT.", nt1, ".", nt2, sep="") | |
| 268 CDR1 = paste("CDR1.IMGT.", nt1, ".", nt2, sep="") | |
| 269 FR2 = paste("FR2.IMGT.", nt1, ".", nt2, sep="") | |
| 270 CDR2 = paste("CDR2.IMGT.", nt1, ".", nt2, sep="") | |
| 271 FR3 = paste("FR3.IMGT.", nt1, ".", nt2, sep="") | |
| 272 if(include_fr1){ | |
| 273 transitionTable[NT1,NT2] = sum(tmp[,c(FR1, CDR1, FR2, CDR2, FR3)]) | |
| 274 } else { | |
| 275 transitionTable[NT1,NT2] = sum(tmp[,c(CDR1, FR2, CDR2, FR3)]) | |
| 276 } | |
| 277 } | |
| 278 } | |
| 279 write.table(x=transitionTable, file="transitions.txt", sep=",",quote=F,row.names=T,col.names=NA) | |
| 280 write.table(x=tmp[,c("Sequence.ID", "best_match", "chunk_hit_percentage", "nt_hit_percentage", "start_locations")], file="matched_all.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
| 281 cat(matrx[1,x], file="total_value.txt") | |
| 282 cat(length(tmp$Sequence.ID), file="total_n.txt") | |
| 283 | |
| 284 | |
| 285 | |
| 286 result = data.frame(matrx) | |
| 287 row.names(result) = c("Number of Mutations (%)", "Transition (%)", "Transversions (%)", "Transitions at G C (%)", "Targeting of C.G (%)", "FR R/S (ratio)", "CDR R/S (ratio)") | |
| 288 | |
| 289 write.table(x=result, file="mutations.txt", sep=",",quote=F,row.names=T,col.names=F) | |
| 290 | |
| 291 | |
| 292 if (!("ggplot2" %in% rownames(installed.packages()))) { | |
| 293 install.packages("ggplot2", repos="http://cran.xl-mirror.nl/") | |
| 294 } | |
| 295 library(ggplot2) | |
| 296 | |
| 297 genesForPlot = gsub("[0-9]", "", dat$best_match) | |
| 298 genesForPlot = data.frame(table(genesForPlot)) | |
| 299 colnames(genesForPlot) = c("Gene","Freq") | |
| 300 genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq) | |
| 301 write.table(genesForPlot, "all.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
| 302 | |
| 303 | |
| 304 pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=label)) | |
| 305 pc = pc + geom_bar(width = 1, stat = "identity") | |
| 306 pc = pc + coord_polar(theta="y") | |
| 307 pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("Classes", "( n =", sum(genesForPlot$Freq), ")")) | |
| 308 | |
| 309 png(filename="all.png") | |
| 310 pc | |
| 311 dev.off() | |
| 312 | |
| 313 | |
| 314 #blegh | |
| 315 genesForPlot = dat[grepl("ca", dat$best_match),]$best_match | |
| 316 if(length(genesForPlot) > 0){ | |
| 317 genesForPlot = data.frame(table(genesForPlot)) | |
| 318 colnames(genesForPlot) = c("Gene","Freq") | |
| 319 genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq) | |
| 320 | |
| 321 pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=label)) | |
| 322 pc = pc + geom_bar(width = 1, stat = "identity") | |
| 323 pc = pc + coord_polar(theta="y") | |
| 324 pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IgA subclasses", "( n =", sum(genesForPlot$Freq), ")")) | |
| 325 write.table(genesForPlot, "ca.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
| 326 | |
| 327 png(filename="ca.png") | |
| 328 print(pc) | |
| 329 dev.off() | |
| 330 } | |
| 331 | |
| 332 genesForPlot = dat[grepl("cg", dat$best_match),]$best_match | |
| 333 if(length(genesForPlot) > 0){ | |
| 334 genesForPlot = data.frame(table(genesForPlot)) | |
| 335 colnames(genesForPlot) = c("Gene","Freq") | |
| 336 genesForPlot$label = paste(genesForPlot$Gene, "-", genesForPlot$Freq) | |
| 337 | |
| 338 pc = ggplot(genesForPlot, aes(x = factor(1), y=Freq, fill=label)) | |
| 339 pc = pc + geom_bar(width = 1, stat = "identity") | |
| 340 pc = pc + coord_polar(theta="y") | |
| 341 pc = pc + xlab(" ") + ylab(" ") + ggtitle(paste("IgG subclasses", "( n =", sum(genesForPlot$Freq), ")")) | |
| 342 write.table(genesForPlot, "cg.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
| 343 | |
| 344 png(filename="cg.png") | |
| 345 print(pc) | |
| 346 dev.off() | |
| 347 } | |
| 348 | |
| 349 dat$percentage_mutations = round(dat$VRegionMutations / dat$VRegionNucleotides * 100, 2) | |
| 350 | |
| 351 p = ggplot(dat, aes(best_match, percentage_mutations)) | |
| 352 p = p + geom_boxplot(aes(middle=mean(percentage_mutations)), alpha=0.1, outlier.shape = NA) + geom_point(aes(colour=best_match), position="jitter") | |
| 353 p = p + xlab("Subclass") + ylab("Frequency") + ggtitle("Frequency scatter plot") | |
| 354 write.table(dat[,c("Sequence.ID", "best_match", "VRegionMutations", "VRegionNucleotides", "percentage_mutations")], "scatter.txt", sep="\t",quote=F,row.names=F,col.names=T) | |
| 355 | |
| 356 | |
| 357 png(filename="scatter.png") | |
| 358 print(p) | |
| 359 dev.off() | |
| 360 | |
| 361 | |
| 362 | |
| 363 | |
| 364 | |
| 365 | |
| 366 | |
| 367 | |
| 368 | |
| 369 | |
| 370 | |
| 371 | |
| 372 | |
| 373 | |
| 374 | |
| 375 | |
| 376 | |
| 377 | |
| 378 | |
| 379 | |
| 380 | |
| 381 | |
| 382 | |
| 383 | |
| 384 | |
| 385 | |
| 386 | |
| 387 | |
| 388 | |
| 389 | |
| 390 | |
| 391 |
