Mercurial > repos > davidvanzessen > argalaxy_tools
comparison gene_identification.py @ 11:0510cf1f7cbc draft
Uploaded
| author | davidvanzessen |
|---|---|
| date | Tue, 04 Aug 2015 09:59:26 -0400 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 10:edbf4fba5fc7 | 11:0510cf1f7cbc |
|---|---|
| 1 import re | |
| 2 import argparse | |
| 3 import time | |
| 4 starttime= int(time.time() * 1000) | |
| 5 | |
| 6 parser = argparse.ArgumentParser() | |
| 7 parser.add_argument("--input", help="The 1_Summary file from an IMGT zip file") | |
| 8 parser.add_argument("--output", help="The annotated output file to be merged back with the summary file") | |
| 9 | |
| 10 args = parser.parse_args() | |
| 11 | |
| 12 infile = args.input | |
| 13 #infile = "test_VH-Ca_Cg_25nt/1_Summary_test_VH-Ca_Cg_25nt_241013.txt" | |
| 14 output = args.output | |
| 15 #outfile = "identified.txt" | |
| 16 | |
| 17 dic = dict() | |
| 18 total = 0 | |
| 19 | |
| 20 | |
| 21 first = True | |
| 22 IDIndex = 0 | |
| 23 seqIndex = 0 | |
| 24 | |
| 25 with open(infile, 'r') as f: #read all sequences into a dictionary as key = ID, value = sequence | |
| 26 for line in f: | |
| 27 total += 1 | |
| 28 if first: | |
| 29 linesplt = line.split("\t") | |
| 30 IDIndex = linesplt.index("Sequence ID") | |
| 31 seqIndex = linesplt.index("Sequence") | |
| 32 first = False | |
| 33 continue | |
| 34 linesplt = line.split("\t") | |
| 35 ID = linesplt[IDIndex] | |
| 36 if len(linesplt) < 28: #weird rows without a sequence | |
| 37 dic[ID] = "" | |
| 38 else: | |
| 39 dic[ID] = linesplt[seqIndex] | |
| 40 | |
| 41 print "Number of input sequences:", len(dic) | |
| 42 | |
| 43 #lambda/kappa reference sequence | |
| 44 searchstrings = {"ca": "catccccgaccagccccaaggtcttcccgctgagcctctgcagcacccagccagatgggaacgtggtcatcgcctgcctgg", | |
| 45 "cg": "ctccaccaagggcccatcggtcttccccctggcaccctcctccaagagcacctctgggggcacagcggccctgggctgcctggtcaaggactacttccccgaaccggtgacggtgtcgtggaactcaggcgccctgaccag", | |
| 46 "cm": "gggagtgcatccgccccaacccttttccccctcgtctcctgtgagaattccc"} | |
| 47 | |
| 48 compiledregex = {"ca": [], | |
| 49 "cg": [], | |
| 50 "cm": []} | |
| 51 | |
| 52 #lambda/kappa reference sequence variable nucleotides | |
| 53 ca1 = {38: 't', 39: 'g', 48: 'a', 49: 'g', 51: 'c', 68: 'a', 73: 'c'} | |
| 54 ca2 = {38: 'g', 39: 'a', 48: 'c', 49: 'c', 51: 'a', 68: 'g', 73: 'a'} | |
| 55 cg1 = {0: 'c', 33: 'a', 38: 'c', 44: 'a', 54: 't', 56: 'g', 58: 'g', 66: 'g', 132: 'c'} | |
| 56 cg2 = {0: 'c', 33: 'g', 38: 'g', 44: 'g', 54: 'c', 56: 'a', 58: 'a', 66: 'g', 132: 't'} | |
| 57 cg3 = {0: 't', 33: 'g', 38: 'g', 44: 'g', 54: 't', 56: 'g', 58: 'g', 66: 'g', 132: 'c'} | |
| 58 cg4 = {0: 't', 33: 'g', 38: 'g', 44: 'g', 54: 'c', 56: 'a', 58: 'a', 66: 'c', 132: 'c'} | |
| 59 | |
| 60 #reference sequences are cut into smaller parts of 'chunklength' length, and with 'chunklength' / 2 overlap | |
| 61 chunklength = 8 | |
| 62 | |
| 63 #create the chunks of the reference sequence with regular expressions for the variable nucleotides | |
| 64 for i in range(0, len(searchstrings["ca"]) - chunklength, chunklength / 2): | |
| 65 pos = i | |
| 66 chunk = searchstrings["ca"][i:i+chunklength] | |
| 67 result = "" | |
| 68 varsInResult = 0 | |
| 69 for c in chunk: | |
| 70 if pos in ca1.keys(): | |
| 71 varsInResult += 1 | |
| 72 result += "[" + ca1[pos] + ca2[pos] + "]" | |
| 73 else: | |
| 74 result += c | |
| 75 pos += 1 | |
| 76 compiledregex["ca"].append((re.compile(result), varsInResult)) | |
| 77 | |
| 78 for i in range(0, len(searchstrings["cg"]) - chunklength, chunklength / 2): | |
| 79 pos = i | |
| 80 chunk = searchstrings["cg"][i:i+chunklength] | |
| 81 result = "" | |
| 82 varsInResult = 0 | |
| 83 for c in chunk: | |
| 84 if pos in cg1.keys(): | |
| 85 varsInResult += 1 | |
| 86 result += "[" + "".join(set([cg1[pos], cg2[pos], cg3[pos], cg4[pos]])) + "]" | |
| 87 else: | |
| 88 result += c | |
| 89 pos += 1 | |
| 90 compiledregex["cg"].append((re.compile(result), varsInResult)) | |
| 91 | |
| 92 for i in range(0, len(searchstrings["cm"]) - chunklength, chunklength / 2): | |
| 93 compiledregex["cm"].append((re.compile(searchstrings["cm"][i:i+chunklength]), False)) | |
| 94 | |
| 95 | |
| 96 | |
| 97 def removeAndReturnMaxIndex(x): #simplifies a list comprehension | |
| 98 m = max(x) | |
| 99 index = x.index(m) | |
| 100 x[index] = 0 | |
| 101 return index | |
| 102 | |
| 103 | |
| 104 start_location = dict() | |
| 105 hits = dict() | |
| 106 alltotal = 0 | |
| 107 for key in compiledregex.keys(): #for ca/cg/cm | |
| 108 regularexpressions = compiledregex[key] #get the compiled regular expressions | |
| 109 for ID in dic.keys()[0:]: #for every ID | |
| 110 if ID not in hits.keys(): #ensure that the dictionairy that keeps track of the hits for every gene exists | |
| 111 hits[ID] = {"ca_hits": 0, "cg_hits": 0, "cm_hits": 0, "ca1": 0, "ca2": 0, "cg1": 0, "cg2": 0, "cg3": 0, "cg4": 0} | |
| 112 currentIDHits = hits[ID] | |
| 113 seq = dic[ID] | |
| 114 lastindex = 0 | |
| 115 start_zero = len(searchstrings[key]) #allows the reference sequence to start before search sequence (start_locations of < 0) | |
| 116 start = [0] * (len(seq) + start_zero) | |
| 117 for i, regexp in enumerate(regularexpressions): #for every regular expression | |
| 118 relativeStartLocation = lastindex - (chunklength / 2) * i | |
| 119 if relativeStartLocation >= len(seq): | |
| 120 break | |
| 121 regex, hasVar = regexp | |
| 122 matches = regex.finditer(seq[lastindex:]) | |
| 123 for match in matches: #for every match with the current regex, only uses the first hit | |
| 124 lastindex += match.start() | |
| 125 start[relativeStartLocation + start_zero] += 1 | |
| 126 if hasVar: #if the regex has a variable nt in it | |
| 127 chunkstart = chunklength / 2 * i #where in the reference does this chunk start | |
| 128 chunkend = chunklength / 2 * i + chunklength #where in the reference does this chunk end | |
| 129 if key == "ca": #just calculate the variable nt score for 'ca', cheaper | |
| 130 currentIDHits["ca1"] += len([1 for x in ca1 if chunkstart <= x < chunkend and ca1[x] == seq[lastindex + x - chunkstart]]) | |
| 131 currentIDHits["ca2"] += len([1 for x in ca2 if chunkstart <= x < chunkend and ca2[x] == seq[lastindex + x - chunkstart]]) | |
| 132 elif key == "cg": #just calculate the variable nt score for 'cg', cheaper | |
| 133 currentIDHits["cg1"] += len([1 for x in cg1 if chunkstart <= x < chunkend and cg1[x] == seq[lastindex + x - chunkstart]]) | |
| 134 currentIDHits["cg2"] += len([1 for x in cg2 if chunkstart <= x < chunkend and cg2[x] == seq[lastindex + x - chunkstart]]) | |
| 135 currentIDHits["cg3"] += len([1 for x in cg3 if chunkstart <= x < chunkend and cg3[x] == seq[lastindex + x - chunkstart]]) | |
| 136 currentIDHits["cg4"] += len([1 for x in cg4 if chunkstart <= x < chunkend and cg4[x] == seq[lastindex + x - chunkstart]]) | |
| 137 else: #key == "cm" #no variable regions in 'cm' | |
| 138 pass | |
| 139 break #this only breaks when there was a match with the regex, breaking means the 'else:' clause is skipped | |
| 140 else: #only runs if there were no hits | |
| 141 continue | |
| 142 #print "found ", regex.pattern , "at", lastindex, "adding one to", (lastindex - chunklength / 2 * i), "to the start array of", ID, "gene", key, "it's now:", start[lastindex - chunklength / 2 * i] | |
| 143 currentIDHits[key + "_hits"] += 1 | |
| 144 start_location[ID + "_" + key] = str([(removeAndReturnMaxIndex(start) + 1 - start_zero) for x in range(5) if len(start) > 0 and max(start) > 1]) | |
| 145 #start_location[ID + "_" + key] = str(start.index(max(start))) | |
| 146 | |
| 147 | |
| 148 chunksInCA = len(compiledregex["ca"]) | |
| 149 chunksInCG = len(compiledregex["cg"]) | |
| 150 chunksInCM = len(compiledregex["cm"]) | |
| 151 requiredChunkPercentage = 0.7 | |
| 152 varsInCA = float(len(ca1.keys()) * 2) | |
| 153 varsInCG = float(len(cg1.keys()) * 2) + 1 | |
| 154 varsInCM = 0 | |
| 155 requiredVarPercentage = 0.7 | |
| 156 | |
| 157 | |
| 158 first = True | |
| 159 seq_write_count=0 | |
| 160 with open(infile, 'r') as f: #read all sequences into a dictionary as key = ID, value = sequence | |
| 161 with open(output, 'w') as o: | |
| 162 for line in f: | |
| 163 total += 1 | |
| 164 if first: | |
| 165 o.write("Sequence ID\tbest_match\tnt_hit_percentage\tchunk_hit_percentage\tstart_locations\n") | |
| 166 first = False | |
| 167 continue | |
| 168 linesplt = line.split("\t") | |
| 169 if linesplt[2] == "No results": | |
| 170 pass | |
| 171 ID = linesplt[1] | |
| 172 currentIDHits = hits[ID] | |
| 173 possibleca = float(len(compiledregex["ca"])) | |
| 174 possiblecg = float(len(compiledregex["cg"])) | |
| 175 possiblecm = float(len(compiledregex["cm"])) | |
| 176 cahits = currentIDHits["ca_hits"] | |
| 177 cghits = currentIDHits["cg_hits"] | |
| 178 cmhits = currentIDHits["cm_hits"] | |
| 179 if cahits >= cghits and cahits >= cmhits: #its a ca gene | |
| 180 ca1hits = currentIDHits["ca1"] | |
| 181 ca2hits = currentIDHits["ca2"] | |
| 182 if ca1hits >= ca2hits: | |
| 183 o.write(ID + "\tca1\t" + str(int(ca1hits / varsInCA * 100)) + "\t" + str(int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\n") | |
| 184 else: | |
| 185 o.write(ID + "\tca2\t" + str(int(ca2hits / varsInCA * 100)) + "\t" + str(int(cahits / possibleca * 100)) + "\t" + start_location[ID + "_ca"] + "\n") | |
| 186 elif cghits >= cahits and cghits >= cmhits: #its a cg gene | |
| 187 cg1hits = currentIDHits["cg1"] | |
| 188 cg2hits = currentIDHits["cg2"] | |
| 189 cg3hits = currentIDHits["cg3"] | |
| 190 cg4hits = currentIDHits["cg4"] | |
| 191 if cg1hits >= cg2hits and cg1hits >= cg3hits and cg1hits >= cg4hits: #cg1 gene | |
| 192 o.write(ID + "\tcg1\t" + str(int(cg1hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n") | |
| 193 elif cg2hits >= cg1hits and cg2hits >= cg3hits and cg2hits >= cg4hits: #cg2 gene | |
| 194 o.write(ID + "\tcg2\t" + str(int(cg2hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n") | |
| 195 elif cg3hits >= cg1hits and cg3hits >= cg2hits and cg3hits >= cg4hits: #cg3 gene | |
| 196 o.write(ID + "\tcg3\t" + str(int(cg3hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n") | |
| 197 else: #cg4 gene | |
| 198 o.write(ID + "\tcg4\t" + str(int(cg4hits / varsInCG * 100)) + "\t" + str(int(cghits / possiblecg * 100)) + "\t" + start_location[ID + "_cg"] + "\n") | |
| 199 else: #its a cm gene | |
| 200 o.write(ID + "\tcm\t0\t" + str(int(cmhits / possiblecm * 100)) + "\t" + start_location[ID + "_cg"] + "\n") | |
| 201 seq_write_count += 1 | |
| 202 | |
| 203 print "Time: %i" % (int(time.time() * 1000) - starttime) | |
| 204 | |
| 205 print "Number of sequences written to file:", seq_write_count | |
| 206 | |
| 207 | |
| 208 | |
| 209 | |
| 210 |
