Mercurial > repos > bgruening > upload_testing
comparison logistic_regression_vif.py @ 80:c4a3a8999945 draft
Uploaded
| author | bernhardlutz |
|---|---|
| date | Mon, 20 Jan 2014 14:39:43 -0500 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 79:dc82017052ac | 80:c4a3a8999945 |
|---|---|
| 1 #!/usr/bin/env python | |
| 2 | |
| 3 #from galaxy import eggs | |
| 4 import sys, string | |
| 5 #from rpy import * | |
| 6 import rpy2.robjects as robjects | |
| 7 import rpy2.rlike.container as rlc | |
| 8 import rpy2.rinterface as ri | |
| 9 r = robjects.r | |
| 10 import numpy | |
| 11 | |
| 12 def stop_err(msg): | |
| 13 sys.stderr.write(msg) | |
| 14 sys.exit() | |
| 15 | |
| 16 infile = sys.argv[1] | |
| 17 y_col = int(sys.argv[2])-1 | |
| 18 x_cols = sys.argv[3].split(',') | |
| 19 outfile = sys.argv[4] | |
| 20 | |
| 21 | |
| 22 print "Predictor columns: %s; Response column: %d" %(x_cols,y_col+1) | |
| 23 fout = open(outfile,'w') | |
| 24 elems = [] | |
| 25 for i, line in enumerate( file ( infile )): | |
| 26 line = line.rstrip('\r\n') | |
| 27 if len( line )>0 and not line.startswith( '#' ): | |
| 28 elems = line.split( '\t' ) | |
| 29 break | |
| 30 if i == 30: | |
| 31 break # Hopefully we'll never get here... | |
| 32 | |
| 33 if len( elems )<1: | |
| 34 stop_err( "The data in your input dataset is either missing or not formatted properly." ) | |
| 35 | |
| 36 y_vals = [] | |
| 37 x_vals = [] | |
| 38 x_vector = [] | |
| 39 for k,col in enumerate(x_cols): | |
| 40 x_cols[k] = int(col)-1 | |
| 41 x_vals.append([]) | |
| 42 | |
| 43 NA = 'NA' | |
| 44 for ind,line in enumerate( file( infile )): | |
| 45 if line and not line.startswith( '#' ): | |
| 46 try: | |
| 47 fields = line.split("\t") | |
| 48 try: | |
| 49 yval = float(fields[y_col]) | |
| 50 except: | |
| 51 yval = r('NA') | |
| 52 y_vals.append(yval) | |
| 53 for k,col in enumerate(x_cols): | |
| 54 try: | |
| 55 xval = float(fields[col]) | |
| 56 except: | |
| 57 xval = r('NA') | |
| 58 x_vals[k].append(xval) | |
| 59 x_vector.append(xval) | |
| 60 except Exception, e: | |
| 61 print e | |
| 62 pass | |
| 63 | |
| 64 #x_vals1 = numpy.asarray(x_vals).transpose() | |
| 65 | |
| 66 check1=0 | |
| 67 check0=0 | |
| 68 for i in y_vals: | |
| 69 if i == 1: | |
| 70 check1=1 | |
| 71 if i == 0: | |
| 72 check0=1 | |
| 73 if check1==0 or check0==0: | |
| 74 sys.exit("Warning: logistic regression must have at least two classes") | |
| 75 | |
| 76 for i in y_vals: | |
| 77 if i not in [1,0,r('NA')]: | |
| 78 print >>fout, str(i) | |
| 79 sys.exit("Warning: the current version of this tool can run only with two classes and need to be labeled as 0 and 1.") | |
| 80 | |
| 81 | |
| 82 #dat= r.list(x=array(x_vals1), y=y_vals) | |
| 83 novif=0 | |
| 84 #set_default_mode(NO_CONVERSION) | |
| 85 #try: | |
| 86 # linear_model = r.glm(r("y ~ x"), data = r.na_exclude(dat),family="binomial") | |
| 87 # #r('library(car)') | |
| 88 # #r.assign('dat',dat) | |
| 89 # #r.assign('ncols',len(x_cols)) | |
| 90 # #r.vif(r('glm(dat$y ~ ., data = na.exclude(data.frame(as.matrix(dat$x,ncol=ncols))->datx),family="binomial")')).as_py() | |
| 91 # | |
| 92 #except RException, rex: | |
| 93 # stop_err("Error performing logistic regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.") | |
| 94 | |
| 95 fv = robjects.FloatVector(x_vector) | |
| 96 m = r['matrix'](fv, ncol=len(x_cols),byrow=True) | |
| 97 # ensure order for generating formula | |
| 98 od = rlc.OrdDict([('y',robjects.FloatVector(y_vals)),('x',m)]) | |
| 99 dat = robjects.DataFrame(od) | |
| 100 # convert dat.names: ["y","x.1","x.2"] to formula string: 'y ~ x.1 + x.2' | |
| 101 formula = ' + '.join(dat.names).replace('+','~',1) | |
| 102 print formula | |
| 103 try: | |
| 104 linear_model = r.glm(formula, data = r['na.exclude'](dat), family="binomial") | |
| 105 except Exception, rex: | |
| 106 stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.") | |
| 107 | |
| 108 if len(x_cols)>1: | |
| 109 try: | |
| 110 r('library(car)') | |
| 111 r.assign('dat',dat) | |
| 112 r.assign('ncols',len(x_cols)) | |
| 113 #vif=r.vif(r('glm(dat$y ~ ., data = na.exclude(data.frame(as.matrix(dat$x,ncol=ncols))->datx),family="binomial")')) | |
| 114 od2 = rlc.OrdDict([('datx', m)]) | |
| 115 glm_data_frame = robjects.DataFrame(od2) | |
| 116 glm_result = r.glm("dat$y ~ .", data = r['na.exclude'](glm_data_frame),family="binomial") | |
| 117 print 'Have glm' | |
| 118 vif = r.vif(glm_result) | |
| 119 except Exception, rex: | |
| 120 print rex | |
| 121 else: | |
| 122 novif=1 | |
| 123 | |
| 124 #set_default_mode(BASIC_CONVERSION) | |
| 125 | |
| 126 #coeffs=linear_model.as_py()['coefficients'] | |
| 127 coeffs=linear_model.rx2('coefficients') | |
| 128 #null_deviance=linear_model.as_py()['null.deviance'] | |
| 129 null_deviance=linear_model.rx2('null.deviance')[0] | |
| 130 #residual_deviance=linear_model.as_py()['deviance'] | |
| 131 residual_deviance=linear_model.rx2('deviance')[0] | |
| 132 #yintercept= coeffs['(Intercept)'] | |
| 133 yintercept= coeffs.rx2('(Intercept)')[0] | |
| 134 | |
| 135 summary = r.summary(linear_model) | |
| 136 #co = summary.get('coefficients', 'NA') | |
| 137 co = summary.rx2("coefficients") | |
| 138 print co | |
| 139 """ | |
| 140 if len(co) != len(x_vals)+1: | |
| 141 stop_err("Stopped performing logistic regression on the input data, since one of the predictor columns contains only non-numeric or invalid values.") | |
| 142 """ | |
| 143 | |
| 144 try: | |
| 145 yintercept = r.round(float(yintercept), digits=10)[0] | |
| 146 #pvaly = r.round(float(co[0][3]), digits=10) | |
| 147 pvaly = r.round(float(co.rx(1,4)[0]), digits=10)[0] | |
| 148 except Exception, e: | |
| 149 print str(e) | |
| 150 pass | |
| 151 print >>fout, "response column\tc%d" %(y_col+1) | |
| 152 tempP=[] | |
| 153 for i in x_cols: | |
| 154 tempP.append('c'+str(i+1)) | |
| 155 tempP=','.join(tempP) | |
| 156 print >>fout, "predictor column(s)\t%s" %(tempP) | |
| 157 print >>fout, "Y-intercept\t%s" %(yintercept) | |
| 158 print >>fout, "p-value (Y-intercept)\t%s" %(pvaly) | |
| 159 | |
| 160 print coeffs | |
| 161 if len(x_vals) == 1: #Simple linear regression case with 1 predictor variable | |
| 162 try: | |
| 163 #slope = r.round(float(coeffs['x']), digits=10) | |
| 164 raw_slope = coeffs.rx2('x')[0] | |
| 165 slope = r.round(float(raw_slope), digits=10)[0] | |
| 166 except: | |
| 167 slope = 'NA' | |
| 168 try: | |
| 169 #pval = r.round(float(co[1][3]), digits=10) | |
| 170 pval = r.round(float(co.rx2(2,4)[0]), digits=10)[0] | |
| 171 except: | |
| 172 pval = 'NA' | |
| 173 print >>fout, "Slope (c%d)\t%s" %(x_cols[0]+1,slope) | |
| 174 print >>fout, "p-value (c%d)\t%s" %(x_cols[0]+1,pval) | |
| 175 else: #Multiple regression case with >1 predictors | |
| 176 ind=1 | |
| 177 #while ind < len(coeffs.keys()): | |
| 178 print len(coeffs.names) | |
| 179 while ind < len(coeffs.names): | |
| 180 try: | |
| 181 #slope = r.round(float(coeffs['x'+str(ind)]), digits=10) | |
| 182 raw_slope = coeffs.rx2('x.' + str(ind))[0] | |
| 183 slope = r.round(float(raw_slope), digits=10)[0] | |
| 184 except: | |
| 185 slope = 'NA' | |
| 186 print >>fout, "Slope (c%d)\t%s" %(x_cols[ind-1]+1,slope) | |
| 187 | |
| 188 try: | |
| 189 #pval = r.round(float(co[ind][3]), digits=10) | |
| 190 pval = r.round(float(co.rx2(ind+1, 4)[0]), digits=10)[0] | |
| 191 except: | |
| 192 pval = 'NA' | |
| 193 print >>fout, "p-value (c%d)\t%s" %(x_cols[ind-1]+1,pval) | |
| 194 ind+=1 | |
| 195 | |
| 196 #rsq = summary.get('r.squared','NA') | |
| 197 rsq = summary.rx2('r.squared') | |
| 198 if rsq == ri.RNULLType(): | |
| 199 rsq = 'NA' | |
| 200 else: | |
| 201 rsq = rsq[0] | |
| 202 | |
| 203 | |
| 204 try: | |
| 205 #rsq= r.round(float((null_deviance-residual_deviance)/null_deviance), digits=5) | |
| 206 rsq= r.round(float((null_deviance-residual_deviance)/null_deviance), digits=5)[0] | |
| 207 #null_deviance= r.round(float(null_deviance), digits=5) | |
| 208 null_deviance= r.round(float(null_deviance), digits=5)[0] | |
| 209 #residual_deviance= r.round(float(residual_deviance), digits=5) | |
| 210 residual_deviance= r.round(float(residual_deviance), digits=5)[0] | |
| 211 | |
| 212 except: | |
| 213 pass | |
| 214 | |
| 215 print >>fout, "Null deviance\t%s" %(null_deviance) | |
| 216 | |
| 217 print >>fout, "Residual deviance\t%s" %(residual_deviance) | |
| 218 print >>fout, "pseudo R-squared\t%s" %(rsq) | |
| 219 print >>fout, "\n" | |
| 220 print >>fout, 'vif' | |
| 221 | |
| 222 if novif==0: | |
| 223 #py_vif=vif.as_py() | |
| 224 count=0 | |
| 225 for i in sorted(vif.names): | |
| 226 print >>fout,'c'+str(x_cols[count]+1) ,str(vif.rx2(i)[0]) | |
| 227 count+=1 | |
| 228 elif novif==1: | |
| 229 print >>fout, "vif can calculate only when model have more than 1 predictor" |
