Mercurial > repos > bgruening > upload_testing
comparison linear_regression.py @ 80:c4a3a8999945 draft
Uploaded
| author | bernhardlutz |
|---|---|
| date | Mon, 20 Jan 2014 14:39:43 -0500 |
| parents | |
| children | babf8ab95495 |
comparison
equal
deleted
inserted
replaced
| 79:dc82017052ac | 80:c4a3a8999945 |
|---|---|
| 1 #!/usr/bin/env python | |
| 2 | |
| 3 from galaxy import eggs | |
| 4 import sys, string | |
| 5 import rpy2.robjects as robjects | |
| 6 import rpy2.rlike.container as rlc | |
| 7 from rpy2.robjects.packages import importr | |
| 8 r = robjects.r | |
| 9 grdevices = importr('grDevices') | |
| 10 # from rpy import * | |
| 11 import numpy | |
| 12 | |
| 13 | |
| 14 def stop_err(msg): | |
| 15 sys.stderr.write(msg) | |
| 16 sys.exit() | |
| 17 | |
| 18 infile = sys.argv[1] | |
| 19 y_col = int(sys.argv[2])-1 | |
| 20 x_cols = sys.argv[3].split(',') | |
| 21 outfile = sys.argv[4] | |
| 22 outfile2 = sys.argv[5] | |
| 23 | |
| 24 print "Predictor columns: %s; Response column: %d" %(x_cols,y_col+1) | |
| 25 fout = open(outfile,'w') | |
| 26 elems = [] | |
| 27 for i, line in enumerate( file ( infile )): | |
| 28 line = line.rstrip('\r\n') | |
| 29 if len( line )>0 and not line.startswith( '#' ): | |
| 30 elems = line.split( '\t' ) | |
| 31 break | |
| 32 if i == 30: | |
| 33 break # Hopefully we'll never get here... | |
| 34 | |
| 35 if len( elems )<1: | |
| 36 stop_err( "The data in your input dataset is either missing or not formatted properly." ) | |
| 37 | |
| 38 y_vals = [] | |
| 39 x_vals = [] | |
| 40 | |
| 41 for k,col in enumerate(x_cols): | |
| 42 x_cols[k] = int(col)-1 | |
| 43 # x_vals.append([]) | |
| 44 | |
| 45 NA = 'NA' | |
| 46 for ind,line in enumerate( file( infile )): | |
| 47 if line and not line.startswith( '#' ): | |
| 48 try: | |
| 49 fields = line.split("\t") | |
| 50 try: | |
| 51 yval = float(fields[y_col]) | |
| 52 except: | |
| 53 yval = r('NA') | |
| 54 y_vals.append(yval) | |
| 55 for k,col in enumerate(x_cols): | |
| 56 try: | |
| 57 xval = float(fields[col]) | |
| 58 except: | |
| 59 xval = r('NA') | |
| 60 # x_vals[k].append(xval) | |
| 61 x_vals.append(xval) | |
| 62 except: | |
| 63 pass | |
| 64 # x_vals1 = numpy.asarray(x_vals).transpose() | |
| 65 # dat= r.list(x=array(x_vals1), y=y_vals) | |
| 66 fv = robjects.FloatVector(x_vals) | |
| 67 m = r['matrix'](fv, ncol=len(x_cols),byrow=True) | |
| 68 # ensure order for generating formula | |
| 69 od = rlc.OrdDict([('y',robjects.FloatVector(y_vals)),('x',m)]) | |
| 70 dat = robjects.DataFrame(od) | |
| 71 # convert dat.names: ["y","x.1","x.2"] to formula string: 'y ~ x.1 + x.2' | |
| 72 formula = ' + '.join(dat.names).replace('+','~',1) | |
| 73 | |
| 74 #set_default_mode(NO_CONVERSION) | |
| 75 try: | |
| 76 #linear_model = r.lm(r("y ~ x"), data = r.na_exclude(dat)) | |
| 77 linear_model = r.lm(formula, data = r['na.exclude'](dat)) | |
| 78 except RException, rex: | |
| 79 stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.") | |
| 80 #set_default_mode(BASIC_CONVERSION) | |
| 81 | |
| 82 #coeffs=linear_model.as_py()['coefficients'] | |
| 83 #yintercept= coeffs['(Intercept)'] | |
| 84 coeffs=linear_model.rx2('coefficients') | |
| 85 yintercept= coeffs.rx2('(Intercept)')[0] | |
| 86 summary = r.summary(linear_model) | |
| 87 | |
| 88 #co = summary.get('coefficients', 'NA') | |
| 89 co = summary.rx2("coefficients") | |
| 90 | |
| 91 """ | |
| 92 if len(co) != len(x_vals)+1: | |
| 93 stop_err("Stopped performing linear regression on the input data, since one of the predictor columns contains only non-numeric or invalid values.") | |
| 94 """ | |
| 95 #print >>fout, "p-value (Y-intercept)\t%s" %(co[0][3]) | |
| 96 print >>fout, "p-value (Y-intercept)\t%s" %(co.rx(1,4)[0]) | |
| 97 | |
| 98 if len(x_vals) == 1: #Simple linear regression case with 1 predictor variable | |
| 99 try: | |
| 100 #slope = coeffs['x'] | |
| 101 slope = r.round(float(coeffs.rx2('x')[0]), digits=10) | |
| 102 except: | |
| 103 slope = 'NA' | |
| 104 try: | |
| 105 #pval = co[1][3] | |
| 106 pval = r.round(float(co.rx(2,4)[0]), digits=10) | |
| 107 except: | |
| 108 pval = 'NA' | |
| 109 print >>fout, "Slope (c%d)\t%s" %(x_cols[0]+1,slope) | |
| 110 print >>fout, "p-value (c%d)\t%s" %(x_cols[0]+1,pval) | |
| 111 else: #Multiple regression case with >1 predictors | |
| 112 ind=1 | |
| 113 #while ind < len(coeffs.keys()): | |
| 114 while ind < len(coeffs.names): | |
| 115 # print >>fout, "Slope (c%d)\t%s" %(x_cols[ind-1]+1,coeffs['x'+str(ind)]) | |
| 116 print >>fout, "Slope (c%d)\t%s" %(x_cols[ind-1]+1,coeffs.rx2(coeffs.names[ind])[0]) | |
| 117 try: | |
| 118 #pval = co[ind][3] | |
| 119 pval = r.round(float(co.rx(ind+1,4)[0]), digits=10) | |
| 120 except: | |
| 121 pval = 'NA' | |
| 122 print >>fout, "p-value (c%d)\t%s" %(x_cols[ind-1]+1,pval) | |
| 123 ind+=1 | |
| 124 | |
| 125 rsq = summary.rx2('r.squared')[0] | |
| 126 adjrsq = summary.rx2('adj.r.squared')[0] | |
| 127 fstat = summary.rx2('fstatistic').rx2('value')[0] | |
| 128 sigma = summary.rx2('sigma')[0] | |
| 129 | |
| 130 try: | |
| 131 rsq = r.round(float(rsq), digits=5) | |
| 132 adjrsq = r.round(float(adjrsq), digits=5) | |
| 133 fval = r.round(fstat['value'], digits=5) | |
| 134 fstat['value'] = str(fval) | |
| 135 sigma = r.round(float(sigma), digits=10) | |
| 136 except: | |
| 137 pass | |
| 138 | |
| 139 print >>fout, "R-squared\t%s" %(rsq) | |
| 140 print >>fout, "Adjusted R-squared\t%s" %(adjrsq) | |
| 141 print >>fout, "F-statistic\t%s" %(fstat) | |
| 142 print >>fout, "Sigma\t%s" %(sigma) | |
| 143 | |
| 144 r.pdf( outfile2, 8, 8 ) | |
| 145 if len(x_vals) == 1: #Simple linear regression case with 1 predictor variable | |
| 146 sub_title = "Slope = %s; Y-int = %s" %(slope,yintercept) | |
| 147 try: | |
| 148 r.plot(x=x_vals[0], y=y_vals, xlab="X", ylab="Y", sub=sub_title, main="Scatterplot with regression") | |
| 149 r.abline(a=yintercept, b=slope, col="red") | |
| 150 except: | |
| 151 pass | |
| 152 else: | |
| 153 r.pairs(dat, main="Scatterplot Matrix", col="blue") | |
| 154 try: | |
| 155 r.plot(linear_model) | |
| 156 except: | |
| 157 pass | |
| 158 #r.dev_off() | |
| 159 grdevices.dev_off() |
