Mercurial > repos > bgruening > upload_testing
comparison kcca.py @ 80:c4a3a8999945 draft
Uploaded
| author | bernhardlutz |
|---|---|
| date | Mon, 20 Jan 2014 14:39:43 -0500 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 79:dc82017052ac | 80:c4a3a8999945 |
|---|---|
| 1 #!/usr/bin/env python | |
| 2 | |
| 3 """ | |
| 4 Run kernel CCA using kcca() from R 'kernlab' package | |
| 5 | |
| 6 usage: %prog [options] | |
| 7 -i, --input=i: Input file | |
| 8 -o, --output1=o: Summary output | |
| 9 -x, --x_cols=x: X-Variable columns | |
| 10 -y, --y_cols=y: Y-Variable columns | |
| 11 -k, --kernel=k: Kernel function | |
| 12 -f, --features=f: Number of canonical components to return | |
| 13 -s, --sigma=s: sigma | |
| 14 -d, --degree=d: degree | |
| 15 -l, --scale=l: scale | |
| 16 -t, --offset=t: offset | |
| 17 -r, --order=r: order | |
| 18 | |
| 19 usage: %prog input output1 x_cols y_cols kernel features sigma(or_None) degree(or_None) scale(or_None) offset(or_None) order(or_None) | |
| 20 """ | |
| 21 | |
| 22 from galaxy import eggs | |
| 23 import sys, string | |
| 24 #from rpy import * | |
| 25 import rpy2.robjects as robjects | |
| 26 import rpy2.rlike.container as rlc | |
| 27 from rpy2.robjects.packages import importr | |
| 28 r = robjects.r | |
| 29 import numpy | |
| 30 import pkg_resources; pkg_resources.require( "bx-python" ) | |
| 31 from bx.cookbook import doc_optparse | |
| 32 | |
| 33 | |
| 34 def stop_err(msg): | |
| 35 sys.stderr.write(msg) | |
| 36 sys.exit() | |
| 37 | |
| 38 #Parse Command Line | |
| 39 options, args = doc_optparse.parse( __doc__ ) | |
| 40 #{'options= kernel': 'rbfdot', 'var_cols': '1,2,3,4', 'degree': 'None', 'output2': '/afs/bx.psu.edu/home/gua110/workspace/galaxy_bitbucket/database/files/000/dataset_260.dat', 'output1': '/afs/bx.psu.edu/home/gua110/workspace/galaxy_bitbucket/database/files/000/dataset_259.dat', 'scale': 'None', 'offset': 'None', 'input': '/afs/bx.psu.edu/home/gua110/workspace/galaxy_bitbucket/database/files/000/dataset_256.dat', 'sigma': '1.0', 'order': 'None'} | |
| 41 | |
| 42 infile = options.input | |
| 43 x_cols = options.x_cols.split(',') | |
| 44 y_cols = options.y_cols.split(',') | |
| 45 kernel = options.kernel | |
| 46 outfile = options.output1 | |
| 47 ncomps = int(options.features) | |
| 48 fout = open(outfile,'w') | |
| 49 | |
| 50 if ncomps < 1: | |
| 51 print "You chose to return '0' canonical components. Please try rerunning the tool with number of components = 1 or more." | |
| 52 sys.exit() | |
| 53 elems = [] | |
| 54 for i, line in enumerate( file ( infile )): | |
| 55 line = line.rstrip('\r\n') | |
| 56 if len( line )>0 and not line.startswith( '#' ): | |
| 57 elems = line.split( '\t' ) | |
| 58 break | |
| 59 if i == 30: | |
| 60 break # Hopefully we'll never get here... | |
| 61 | |
| 62 if len( elems )<1: | |
| 63 stop_err( "The data in your input dataset is either missing or not formatted properly." ) | |
| 64 | |
| 65 x_vals = [] | |
| 66 for k,col in enumerate(x_cols): | |
| 67 x_cols[k] = int(col)-1 | |
| 68 #x_vals.append([]) | |
| 69 y_vals = [] | |
| 70 for k,col in enumerate(y_cols): | |
| 71 y_cols[k] = int(col)-1 | |
| 72 #y_vals.append([]) | |
| 73 NA = 'NA' | |
| 74 skipped = 0 | |
| 75 for ind,line in enumerate( file( infile )): | |
| 76 if line and not line.startswith( '#' ): | |
| 77 try: | |
| 78 fields = line.strip().split("\t") | |
| 79 valid_line = True | |
| 80 for col in x_cols+y_cols: | |
| 81 try: | |
| 82 assert float(fields[col]) | |
| 83 except: | |
| 84 skipped += 1 | |
| 85 valid_line = False | |
| 86 break | |
| 87 if valid_line: | |
| 88 for k,col in enumerate(x_cols): | |
| 89 try: | |
| 90 xval = float(fields[col]) | |
| 91 except: | |
| 92 xval = NaN# | |
| 93 #x_vals[k].append(xval) | |
| 94 x_vals.append(xval) | |
| 95 for k,col in enumerate(y_cols): | |
| 96 try: | |
| 97 yval = float(fields[col]) | |
| 98 except: | |
| 99 yval = NaN# | |
| 100 #y_vals[k].append(yval) | |
| 101 y_vals.append(yval) | |
| 102 except: | |
| 103 skipped += 1 | |
| 104 | |
| 105 #x_vals1 = numpy.asarray(x_vals).transpose() | |
| 106 #y_vals1 = numpy.asarray(y_vals).transpose() | |
| 107 | |
| 108 #x_dat= r.list(array(x_vals1)) | |
| 109 #y_dat= r.list(array(y_vals1)) | |
| 110 | |
| 111 x_dat = r['matrix'](robjects.FloatVector(x_vals),ncol=len(x_cols),byrow=True) | |
| 112 y_dat = r['matrix'](robjects.FloatVector(y_vals),ncol=len(y_cols),byrow=True) | |
| 113 | |
| 114 try: | |
| 115 r.suppressWarnings(r.library('kernlab')) | |
| 116 except: | |
| 117 stop_err('Missing R library kernlab') | |
| 118 | |
| 119 #set_default_mode(NO_CONVERSION) | |
| 120 if kernel=="rbfdot" or kernel=="anovadot": | |
| 121 pars = r.list(sigma=float(options.sigma)) | |
| 122 elif kernel=="polydot": | |
| 123 pars = r.list(degree=float(options.degree),scale=float(options.scale),offset=float(options.offset)) | |
| 124 elif kernel=="tanhdot": | |
| 125 pars = r.list(scale=float(options.scale),offset=float(options.offset)) | |
| 126 elif kernel=="besseldot": | |
| 127 pars = r.list(degree=float(options.degree),sigma=float(options.sigma),order=float(options.order)) | |
| 128 elif kernel=="anovadot": | |
| 129 pars = r.list(degree=float(options.degree),sigma=float(options.sigma)) | |
| 130 else: | |
| 131 pars = rlist() | |
| 132 | |
| 133 try: | |
| 134 kcc = r.kcca(x=x_dat, y=y_dat, kernel=kernel, kpar=pars, ncomps=ncomps) | |
| 135 except RException, rex: | |
| 136 stop_err("Encountered error while performing kCCA on the input data: %s" %(rex)) | |
| 137 | |
| 138 #set_default_mode(BASIC_CONVERSION) | |
| 139 kcor = r.kcor(kcc) | |
| 140 if ncomps == 1: | |
| 141 kcor = [kcor] | |
| 142 xcoef = r.xcoef(kcc) | |
| 143 ycoef = r.ycoef(kcc) | |
| 144 | |
| 145 print >>fout, "#Component\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) | |
| 146 | |
| 147 print >>fout, "#Correlation\t%s" %("\t".join(["%.4g" % el for el in kcor])) | |
| 148 | |
| 149 print >>fout, "#Estimated X-coefficients\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) | |
| 150 #for obs,val in enumerate(xcoef): | |
| 151 # print >>fout, "%s\t%s" %(obs+1, "\t".join(["%.4g" % el for el in val])) | |
| 152 for i in range(1,xcoef.nrow+1): | |
| 153 vals = [] | |
| 154 for j in range(1,xcoef.ncol+1): | |
| 155 vals.append("%.4g" % xcoef.rx2(i,j)[0]) | |
| 156 print >>fout, "%s\t%s" %(i, "\t".join(vals)) | |
| 157 | |
| 158 | |
| 159 print >>fout, "#Estimated Y-coefficients\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)])) | |
| 160 #for obs,val in enumerate(ycoef): | |
| 161 # print >>fout, "%s\t%s" %(obs+1, "\t".join(["%.4g" % el for el in val])) | |
| 162 for i in range(1,ycoef.nrow+1): | |
| 163 vals = [] | |
| 164 for j in range(1,ycoef.ncol+1): | |
| 165 vals.append("%.4g" % ycoef.rx2(i,j)[0]) | |
| 166 print >>fout, "%s\t%s" %(i, "\t".join(vals)) |
