| 
80
 | 
     1 #!/usr/bin/env python
 | 
| 
 | 
     2 
 | 
| 
 | 
     3 """
 | 
| 
 | 
     4 Run kernel CCA using kcca() from R 'kernlab' package
 | 
| 
 | 
     5 
 | 
| 
 | 
     6 usage: %prog [options]
 | 
| 
 | 
     7    -i, --input=i: Input file
 | 
| 
 | 
     8    -o, --output1=o: Summary output
 | 
| 
 | 
     9    -x, --x_cols=x: X-Variable columns
 | 
| 
 | 
    10    -y, --y_cols=y: Y-Variable columns
 | 
| 
 | 
    11    -k, --kernel=k: Kernel function
 | 
| 
 | 
    12    -f, --features=f: Number of canonical components to return
 | 
| 
 | 
    13    -s, --sigma=s: sigma
 | 
| 
 | 
    14    -d, --degree=d: degree
 | 
| 
 | 
    15    -l, --scale=l: scale
 | 
| 
 | 
    16    -t, --offset=t: offset
 | 
| 
 | 
    17    -r, --order=r: order
 | 
| 
 | 
    18 
 | 
| 
 | 
    19 usage: %prog input output1 x_cols y_cols kernel features sigma(or_None) degree(or_None) scale(or_None) offset(or_None) order(or_None)
 | 
| 
 | 
    20 """
 | 
| 
 | 
    21 
 | 
| 
 | 
    22 from galaxy import eggs
 | 
| 
 | 
    23 import sys, string
 | 
| 
 | 
    24 #from rpy import *
 | 
| 
 | 
    25 import rpy2.robjects as robjects
 | 
| 
 | 
    26 import rpy2.rlike.container as rlc
 | 
| 
 | 
    27 from rpy2.robjects.packages import importr
 | 
| 
 | 
    28 r = robjects.r
 | 
| 
 | 
    29 import numpy
 | 
| 
 | 
    30 import pkg_resources; pkg_resources.require( "bx-python" )
 | 
| 
 | 
    31 from bx.cookbook import doc_optparse
 | 
| 
 | 
    32 
 | 
| 
 | 
    33 
 | 
| 
 | 
    34 def stop_err(msg):
 | 
| 
 | 
    35     sys.stderr.write(msg)
 | 
| 
 | 
    36     sys.exit()
 | 
| 
 | 
    37 
 | 
| 
 | 
    38 #Parse Command Line
 | 
| 
 | 
    39 options, args = doc_optparse.parse( __doc__ )
 | 
| 
 | 
    40 #{'options= kernel': 'rbfdot', 'var_cols': '1,2,3,4', 'degree': 'None', 'output2': '/afs/bx.psu.edu/home/gua110/workspace/galaxy_bitbucket/database/files/000/dataset_260.dat', 'output1': '/afs/bx.psu.edu/home/gua110/workspace/galaxy_bitbucket/database/files/000/dataset_259.dat', 'scale': 'None', 'offset': 'None', 'input': '/afs/bx.psu.edu/home/gua110/workspace/galaxy_bitbucket/database/files/000/dataset_256.dat', 'sigma': '1.0', 'order': 'None'}
 | 
| 
 | 
    41 
 | 
| 
 | 
    42 infile = options.input
 | 
| 
 | 
    43 x_cols = options.x_cols.split(',')
 | 
| 
 | 
    44 y_cols = options.y_cols.split(',')
 | 
| 
 | 
    45 kernel = options.kernel
 | 
| 
 | 
    46 outfile = options.output1
 | 
| 
 | 
    47 ncomps = int(options.features)
 | 
| 
 | 
    48 fout = open(outfile,'w')
 | 
| 
 | 
    49 
 | 
| 
 | 
    50 if ncomps < 1:
 | 
| 
 | 
    51     print "You chose to return '0' canonical components. Please try rerunning the tool with number of components = 1 or more."
 | 
| 
 | 
    52     sys.exit()
 | 
| 
 | 
    53 elems = []
 | 
| 
 | 
    54 for i, line in enumerate( file ( infile )):
 | 
| 
 | 
    55     line = line.rstrip('\r\n')
 | 
| 
 | 
    56     if len( line )>0 and not line.startswith( '#' ):
 | 
| 
 | 
    57         elems = line.split( '\t' )
 | 
| 
 | 
    58         break 
 | 
| 
 | 
    59     if i == 30:
 | 
| 
 | 
    60         break # Hopefully we'll never get here...
 | 
| 
 | 
    61 
 | 
| 
 | 
    62 if len( elems )<1:
 | 
| 
 | 
    63     stop_err( "The data in your input dataset is either missing or not formatted properly." )
 | 
| 
 | 
    64 
 | 
| 
 | 
    65 x_vals = []
 | 
| 
 | 
    66 for k,col in enumerate(x_cols):
 | 
| 
 | 
    67     x_cols[k] = int(col)-1
 | 
| 
 | 
    68     #x_vals.append([])
 | 
| 
 | 
    69 y_vals = []
 | 
| 
 | 
    70 for k,col in enumerate(y_cols):
 | 
| 
 | 
    71     y_cols[k] = int(col)-1
 | 
| 
 | 
    72     #y_vals.append([])
 | 
| 
 | 
    73 NA = 'NA'
 | 
| 
 | 
    74 skipped = 0
 | 
| 
 | 
    75 for ind,line in enumerate( file( infile )):
 | 
| 
 | 
    76     if line and not line.startswith( '#' ):
 | 
| 
 | 
    77         try:
 | 
| 
 | 
    78             fields = line.strip().split("\t")
 | 
| 
 | 
    79             valid_line = True
 | 
| 
 | 
    80             for col in x_cols+y_cols:
 | 
| 
 | 
    81                 try:
 | 
| 
 | 
    82                     assert float(fields[col])
 | 
| 
 | 
    83                 except:
 | 
| 
 | 
    84                     skipped += 1
 | 
| 
 | 
    85                     valid_line = False
 | 
| 
 | 
    86                     break
 | 
| 
 | 
    87             if valid_line:
 | 
| 
 | 
    88                 for k,col in enumerate(x_cols):
 | 
| 
 | 
    89                     try:
 | 
| 
 | 
    90                         xval = float(fields[col])
 | 
| 
 | 
    91                     except:
 | 
| 
 | 
    92                         xval = NaN#
 | 
| 
 | 
    93                     #x_vals[k].append(xval)
 | 
| 
 | 
    94                     x_vals.append(xval)
 | 
| 
 | 
    95                 for k,col in enumerate(y_cols):
 | 
| 
 | 
    96                     try:
 | 
| 
 | 
    97                         yval = float(fields[col])
 | 
| 
 | 
    98                     except:
 | 
| 
 | 
    99                         yval = NaN#
 | 
| 
 | 
   100                     #y_vals[k].append(yval)
 | 
| 
 | 
   101                     y_vals.append(yval)
 | 
| 
 | 
   102         except:
 | 
| 
 | 
   103             skipped += 1
 | 
| 
 | 
   104 
 | 
| 
 | 
   105 #x_vals1 = numpy.asarray(x_vals).transpose()
 | 
| 
 | 
   106 #y_vals1 = numpy.asarray(y_vals).transpose()
 | 
| 
 | 
   107 
 | 
| 
 | 
   108 #x_dat= r.list(array(x_vals1))
 | 
| 
 | 
   109 #y_dat= r.list(array(y_vals1))
 | 
| 
 | 
   110 
 | 
| 
 | 
   111 x_dat = r['matrix'](robjects.FloatVector(x_vals),ncol=len(x_cols),byrow=True)
 | 
| 
 | 
   112 y_dat = r['matrix'](robjects.FloatVector(y_vals),ncol=len(y_cols),byrow=True)
 | 
| 
 | 
   113 
 | 
| 
 | 
   114 try:
 | 
| 
 | 
   115     r.suppressWarnings(r.library('kernlab'))
 | 
| 
 | 
   116 except:
 | 
| 
 | 
   117     stop_err('Missing R library kernlab')
 | 
| 
 | 
   118             
 | 
| 
 | 
   119 #set_default_mode(NO_CONVERSION)
 | 
| 
 | 
   120 if kernel=="rbfdot" or kernel=="anovadot":
 | 
| 
 | 
   121     pars = r.list(sigma=float(options.sigma))
 | 
| 
 | 
   122 elif kernel=="polydot":
 | 
| 
 | 
   123     pars = r.list(degree=float(options.degree),scale=float(options.scale),offset=float(options.offset))
 | 
| 
 | 
   124 elif kernel=="tanhdot":
 | 
| 
 | 
   125     pars = r.list(scale=float(options.scale),offset=float(options.offset))
 | 
| 
 | 
   126 elif kernel=="besseldot":
 | 
| 
 | 
   127     pars = r.list(degree=float(options.degree),sigma=float(options.sigma),order=float(options.order))
 | 
| 
 | 
   128 elif kernel=="anovadot":
 | 
| 
 | 
   129     pars = r.list(degree=float(options.degree),sigma=float(options.sigma))
 | 
| 
 | 
   130 else:
 | 
| 
 | 
   131     pars = rlist()
 | 
| 
 | 
   132     
 | 
| 
 | 
   133 try:
 | 
| 
 | 
   134     kcc = r.kcca(x=x_dat, y=y_dat, kernel=kernel, kpar=pars, ncomps=ncomps)
 | 
| 
 | 
   135 except RException, rex:
 | 
| 
 | 
   136     stop_err("Encountered error while performing kCCA on the input data: %s" %(rex))
 | 
| 
 | 
   137 
 | 
| 
 | 
   138 #set_default_mode(BASIC_CONVERSION)    
 | 
| 
 | 
   139 kcor = r.kcor(kcc)
 | 
| 
 | 
   140 if ncomps == 1:
 | 
| 
 | 
   141     kcor = [kcor]
 | 
| 
 | 
   142 xcoef = r.xcoef(kcc)
 | 
| 
 | 
   143 ycoef = r.ycoef(kcc)
 | 
| 
 | 
   144 
 | 
| 
 | 
   145 print >>fout, "#Component\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)]))
 | 
| 
 | 
   146 
 | 
| 
 | 
   147 print >>fout, "#Correlation\t%s" %("\t".join(["%.4g" % el for el in kcor]))
 | 
| 
 | 
   148     
 | 
| 
 | 
   149 print >>fout, "#Estimated X-coefficients\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)]))
 | 
| 
 | 
   150 #for obs,val in enumerate(xcoef):
 | 
| 
 | 
   151 #    print >>fout, "%s\t%s" %(obs+1, "\t".join(["%.4g" % el for el in val]))
 | 
| 
 | 
   152 for i in range(1,xcoef.nrow+1):
 | 
| 
 | 
   153     vals = []
 | 
| 
 | 
   154     for j in range(1,xcoef.ncol+1):
 | 
| 
 | 
   155        vals.append("%.4g" % xcoef.rx2(i,j)[0])
 | 
| 
 | 
   156     print >>fout, "%s\t%s" %(i, "\t".join(vals))
 | 
| 
 | 
   157 
 | 
| 
 | 
   158 
 | 
| 
 | 
   159 print >>fout, "#Estimated Y-coefficients\t%s" %("\t".join(["%s" % el for el in range(1,ncomps+1)]))
 | 
| 
 | 
   160 #for obs,val in enumerate(ycoef):
 | 
| 
 | 
   161 #    print >>fout, "%s\t%s" %(obs+1, "\t".join(["%.4g" % el for el in val]))
 | 
| 
 | 
   162 for i in range(1,ycoef.nrow+1):
 | 
| 
 | 
   163     vals = []
 | 
| 
 | 
   164     for j in range(1,ycoef.ncol+1):
 | 
| 
 | 
   165        vals.append("%.4g" % ycoef.rx2(i,j)[0])
 | 
| 
 | 
   166     print >>fout, "%s\t%s" %(i, "\t".join(vals))
 |