| 
80
 | 
     1 #!/usr/bin/env python
 | 
| 
 | 
     2 
 | 
| 
 | 
     3 import sys, string
 | 
| 
 | 
     4 import rpy2.robjects as robjects
 | 
| 
 | 
     5 import rpy2.rlike.container as rlc
 | 
| 
 | 
     6 from rpy2.robjects.packages import importr
 | 
| 
 | 
     7 r = robjects.r
 | 
| 
 | 
     8 grdevices = importr('grDevices')
 | 
| 
 | 
     9 #  from rpy import *
 | 
| 
 | 
    10 import numpy
 | 
| 
 | 
    11 
 | 
| 
 | 
    12 
 | 
| 
 | 
    13 def stop_err(msg):
 | 
| 
 | 
    14     sys.stderr.write(msg)
 | 
| 
 | 
    15     sys.exit()
 | 
| 
 | 
    16 
 | 
| 
 | 
    17 infile = sys.argv[1]
 | 
| 
 | 
    18 y_col = int(sys.argv[2])-1
 | 
| 
 | 
    19 x_cols = sys.argv[3].split(',')
 | 
| 
 | 
    20 outfile = sys.argv[4]
 | 
| 
 | 
    21 outfile2 = sys.argv[5]
 | 
| 
 | 
    22 
 | 
| 
 | 
    23 print "Predictor columns: %s; Response column: %d" %(x_cols,y_col+1)
 | 
| 
 | 
    24 fout = open(outfile,'w')
 | 
| 
 | 
    25 elems = []
 | 
| 
 | 
    26 for i, line in enumerate( file ( infile )):
 | 
| 
 | 
    27     line = line.rstrip('\r\n')
 | 
| 
 | 
    28     if len( line )>0 and not line.startswith( '#' ):
 | 
| 
 | 
    29         elems = line.split( '\t' )
 | 
| 
 | 
    30         break 
 | 
| 
 | 
    31     if i == 30:
 | 
| 
 | 
    32         break # Hopefully we'll never get here...
 | 
| 
 | 
    33 
 | 
| 
 | 
    34 if len( elems )<1:
 | 
| 
 | 
    35     stop_err( "The data in your input dataset is either missing or not formatted properly." )
 | 
| 
 | 
    36 
 | 
| 
 | 
    37 y_vals = []
 | 
| 
 | 
    38 x_vals = []
 | 
| 
 | 
    39 
 | 
| 
 | 
    40 for k,col in enumerate(x_cols):
 | 
| 
 | 
    41     x_cols[k] = int(col)-1
 | 
| 
 | 
    42     # x_vals.append([])
 | 
| 
 | 
    43 
 | 
| 
 | 
    44 NA = 'NA'
 | 
| 
 | 
    45 for ind,line in enumerate( file( infile )):
 | 
| 
 | 
    46     if line and not line.startswith( '#' ):
 | 
| 
 | 
    47         try:
 | 
| 
 | 
    48             fields = line.split("\t")
 | 
| 
 | 
    49             try:
 | 
| 
 | 
    50                 yval = float(fields[y_col])
 | 
| 
 | 
    51             except:
 | 
| 
 | 
    52                 yval = r('NA')
 | 
| 
 | 
    53             y_vals.append(yval)
 | 
| 
 | 
    54             for k,col in enumerate(x_cols):
 | 
| 
 | 
    55                 try:
 | 
| 
 | 
    56                     xval = float(fields[col])
 | 
| 
 | 
    57                 except:
 | 
| 
 | 
    58                     xval = r('NA')
 | 
| 
 | 
    59                 # x_vals[k].append(xval)
 | 
| 
 | 
    60                 x_vals.append(xval)
 | 
| 
 | 
    61         except:
 | 
| 
 | 
    62             pass
 | 
| 
 | 
    63 # x_vals1 = numpy.asarray(x_vals).transpose()
 | 
| 
 | 
    64 # dat= r.list(x=array(x_vals1), y=y_vals)
 | 
| 
 | 
    65 fv = robjects.FloatVector(x_vals)
 | 
| 
 | 
    66 m = r['matrix'](fv, ncol=len(x_cols),byrow=True)
 | 
| 
 | 
    67 # ensure order for generating formula
 | 
| 
 | 
    68 od = rlc.OrdDict([('y',robjects.FloatVector(y_vals)),('x',m)])
 | 
| 
 | 
    69 dat = robjects.DataFrame(od)
 | 
| 
 | 
    70 # convert dat.names: ["y","x.1","x.2"] to formula string: 'y ~ x.1 + x.2'
 | 
| 
 | 
    71 formula = ' + '.join(dat.names).replace('+','~',1)
 | 
| 
 | 
    72 
 | 
| 
 | 
    73 #set_default_mode(NO_CONVERSION)
 | 
| 
 | 
    74 try:
 | 
| 
 | 
    75     #linear_model = r.lm(r("y ~ x"), data = r.na_exclude(dat))
 | 
| 
 | 
    76     linear_model = r.lm(formula,  data =  r['na.exclude'](dat))
 | 
| 
 | 
    77 except RException, rex:
 | 
| 
 | 
    78     stop_err("Error performing linear regression on the input data.\nEither the response column or one of the predictor columns contain only non-numeric or invalid values.")
 | 
| 
 | 
    79 #set_default_mode(BASIC_CONVERSION)
 | 
| 
 | 
    80 
 | 
| 
 | 
    81 #coeffs=linear_model.as_py()['coefficients']
 | 
| 
 | 
    82 #yintercept= coeffs['(Intercept)']
 | 
| 
 | 
    83 coeffs=linear_model.rx2('coefficients')
 | 
| 
 | 
    84 yintercept= coeffs.rx2('(Intercept)')[0]
 | 
| 
 | 
    85 summary = r.summary(linear_model)
 | 
| 
 | 
    86 
 | 
| 
 | 
    87 #co = summary.get('coefficients', 'NA')
 | 
| 
 | 
    88 co = summary.rx2("coefficients")
 | 
| 
 | 
    89 
 | 
| 
 | 
    90 """
 | 
| 
 | 
    91 if len(co) != len(x_vals)+1:
 | 
| 
 | 
    92     stop_err("Stopped performing linear regression on the input data, since one of the predictor columns contains only non-numeric or invalid values.")
 | 
| 
 | 
    93 """
 | 
| 
 | 
    94 #print >>fout, "p-value (Y-intercept)\t%s" %(co[0][3])
 | 
| 
 | 
    95 print >>fout, "p-value (Y-intercept)\t%s" %(co.rx(1,4)[0])
 | 
| 
 | 
    96 
 | 
| 
 | 
    97 if len(x_vals) == 1:    #Simple linear  regression case with 1 predictor variable
 | 
| 
 | 
    98     try:
 | 
| 
 | 
    99         #slope = coeffs['x']
 | 
| 
 | 
   100         slope = r.round(float(coeffs.rx2('x')[0]), digits=10)
 | 
| 
 | 
   101     except:
 | 
| 
 | 
   102         slope = 'NA'
 | 
| 
 | 
   103     try:
 | 
| 
 | 
   104         #pval = co[1][3]
 | 
| 
 | 
   105         pval = r.round(float(co.rx(2,4)[0]), digits=10)
 | 
| 
 | 
   106     except:
 | 
| 
 | 
   107         pval = 'NA'
 | 
| 
 | 
   108     print >>fout, "Slope (c%d)\t%s" %(x_cols[0]+1,slope)
 | 
| 
 | 
   109     print >>fout, "p-value (c%d)\t%s" %(x_cols[0]+1,pval)
 | 
| 
 | 
   110 else:    #Multiple regression case with >1 predictors
 | 
| 
 | 
   111     ind=1
 | 
| 
 | 
   112     #while ind < len(coeffs.keys()):
 | 
| 
 | 
   113     while ind < len(coeffs.names):
 | 
| 
 | 
   114         # print >>fout, "Slope (c%d)\t%s" %(x_cols[ind-1]+1,coeffs['x'+str(ind)])
 | 
| 
 | 
   115         print >>fout, "Slope (c%d)\t%s" %(x_cols[ind-1]+1,coeffs.rx2(coeffs.names[ind])[0])
 | 
| 
 | 
   116         try:
 | 
| 
 | 
   117             #pval = co[ind][3]
 | 
| 
 | 
   118             pval = r.round(float(co.rx(ind+1,4)[0]), digits=10)
 | 
| 
 | 
   119         except:
 | 
| 
 | 
   120             pval = 'NA'
 | 
| 
 | 
   121         print >>fout, "p-value (c%d)\t%s" %(x_cols[ind-1]+1,pval)
 | 
| 
 | 
   122         ind+=1
 | 
| 
 | 
   123 
 | 
| 
 | 
   124 rsq = summary.rx2('r.squared')[0]
 | 
| 
 | 
   125 adjrsq = summary.rx2('adj.r.squared')[0]
 | 
| 
 | 
   126 fstat = summary.rx2('fstatistic').rx2('value')[0]
 | 
| 
 | 
   127 sigma = summary.rx2('sigma')[0]
 | 
| 
 | 
   128 
 | 
| 
 | 
   129 try:
 | 
| 
 | 
   130     rsq = r.round(float(rsq), digits=5)
 | 
| 
 | 
   131     adjrsq = r.round(float(adjrsq), digits=5)
 | 
| 
 | 
   132     fval = r.round(fstat['value'], digits=5)
 | 
| 
 | 
   133     fstat['value'] = str(fval)
 | 
| 
 | 
   134     sigma = r.round(float(sigma), digits=10)
 | 
| 
 | 
   135 except:
 | 
| 
 | 
   136     pass
 | 
| 
 | 
   137 
 | 
| 
 | 
   138 print >>fout, "R-squared\t%s" %(rsq)
 | 
| 
 | 
   139 print >>fout, "Adjusted R-squared\t%s" %(adjrsq)
 | 
| 
 | 
   140 print >>fout, "F-statistic\t%s" %(fstat)
 | 
| 
 | 
   141 print >>fout, "Sigma\t%s" %(sigma)
 | 
| 
 | 
   142 
 | 
| 
 | 
   143 r.pdf( outfile2, 8, 8 )
 | 
| 
 | 
   144 if len(x_vals) == 1:    #Simple linear  regression case with 1 predictor variable
 | 
| 
 | 
   145     sub_title =  "Slope = %s; Y-int = %s" %(slope,yintercept)
 | 
| 
 | 
   146     try:
 | 
| 
 | 
   147         r.plot(x=x_vals[0], y=y_vals, xlab="X", ylab="Y", sub=sub_title, main="Scatterplot with regression")
 | 
| 
 | 
   148         r.abline(a=yintercept, b=slope, col="red")
 | 
| 
 | 
   149     except:
 | 
| 
 | 
   150         pass
 | 
| 
 | 
   151 else:
 | 
| 
 | 
   152     r.pairs(dat, main="Scatterplot Matrix", col="blue")
 | 
| 
 | 
   153 try:
 | 
| 
 | 
   154     r.plot(linear_model)
 | 
| 
 | 
   155 except:
 | 
| 
 | 
   156     pass
 | 
| 
 | 
   157 #r.dev_off()
 | 
| 
 | 
   158 grdevices.dev_off()
 |