Mercurial > repos > bgruening > stacking_ensemble_models
comparison simple_model_fit.py @ 2:38c4f8a98038 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 5b2ac730ec6d3b762faa9034eddd19ad1b347476"
| author | bgruening |
|---|---|
| date | Mon, 16 Dec 2019 10:07:37 +0000 |
| parents | |
| children | 0a1812986bc3 |
comparison
equal
deleted
inserted
replaced
| 1:c1b0c8232816 | 2:38c4f8a98038 |
|---|---|
| 1 import argparse | |
| 2 import json | |
| 3 import pandas as pd | |
| 4 import pickle | |
| 5 | |
| 6 from galaxy_ml.utils import load_model, read_columns | |
| 7 from sklearn.pipeline import Pipeline | |
| 8 | |
| 9 | |
| 10 N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) | |
| 11 | |
| 12 | |
| 13 # TODO import from galaxy_ml.utils in future versions | |
| 14 def clean_params(estimator, n_jobs=None): | |
| 15 """clean unwanted hyperparameter settings | |
| 16 | |
| 17 If n_jobs is not None, set it into the estimator, if applicable | |
| 18 | |
| 19 Return | |
| 20 ------ | |
| 21 Cleaned estimator object | |
| 22 """ | |
| 23 ALLOWED_CALLBACKS = ('EarlyStopping', 'TerminateOnNaN', | |
| 24 'ReduceLROnPlateau', 'CSVLogger', 'None') | |
| 25 | |
| 26 estimator_params = estimator.get_params() | |
| 27 | |
| 28 for name, p in estimator_params.items(): | |
| 29 # all potential unauthorized file write | |
| 30 if name == 'memory' or name.endswith('__memory') \ | |
| 31 or name.endswith('_path'): | |
| 32 new_p = {name: None} | |
| 33 estimator.set_params(**new_p) | |
| 34 elif n_jobs is not None and (name == 'n_jobs' or | |
| 35 name.endswith('__n_jobs')): | |
| 36 new_p = {name: n_jobs} | |
| 37 estimator.set_params(**new_p) | |
| 38 elif name.endswith('callbacks'): | |
| 39 for cb in p: | |
| 40 cb_type = cb['callback_selection']['callback_type'] | |
| 41 if cb_type not in ALLOWED_CALLBACKS: | |
| 42 raise ValueError( | |
| 43 "Prohibited callback type: %s!" % cb_type) | |
| 44 | |
| 45 return estimator | |
| 46 | |
| 47 | |
| 48 def _get_X_y(params, infile1, infile2): | |
| 49 """ read from inputs and output X and y | |
| 50 | |
| 51 Parameters | |
| 52 ---------- | |
| 53 params : dict | |
| 54 Tool inputs parameter | |
| 55 infile1 : str | |
| 56 File path to dataset containing features | |
| 57 infile2 : str | |
| 58 File path to dataset containing target values | |
| 59 | |
| 60 """ | |
| 61 # store read dataframe object | |
| 62 loaded_df = {} | |
| 63 | |
| 64 input_type = params['input_options']['selected_input'] | |
| 65 # tabular input | |
| 66 if input_type == 'tabular': | |
| 67 header = 'infer' if params['input_options']['header1'] else None | |
| 68 column_option = (params['input_options']['column_selector_options_1'] | |
| 69 ['selected_column_selector_option']) | |
| 70 if column_option in ['by_index_number', 'all_but_by_index_number', | |
| 71 'by_header_name', 'all_but_by_header_name']: | |
| 72 c = params['input_options']['column_selector_options_1']['col1'] | |
| 73 else: | |
| 74 c = None | |
| 75 | |
| 76 df_key = infile1 + repr(header) | |
| 77 df = pd.read_csv(infile1, sep='\t', header=header, | |
| 78 parse_dates=True) | |
| 79 loaded_df[df_key] = df | |
| 80 | |
| 81 X = read_columns(df, c=c, c_option=column_option).astype(float) | |
| 82 # sparse input | |
| 83 elif input_type == 'sparse': | |
| 84 X = mmread(open(infile1, 'r')) | |
| 85 | |
| 86 # Get target y | |
| 87 header = 'infer' if params['input_options']['header2'] else None | |
| 88 column_option = (params['input_options']['column_selector_options_2'] | |
| 89 ['selected_column_selector_option2']) | |
| 90 if column_option in ['by_index_number', 'all_but_by_index_number', | |
| 91 'by_header_name', 'all_but_by_header_name']: | |
| 92 c = params['input_options']['column_selector_options_2']['col2'] | |
| 93 else: | |
| 94 c = None | |
| 95 | |
| 96 df_key = infile2 + repr(header) | |
| 97 if df_key in loaded_df: | |
| 98 infile2 = loaded_df[df_key] | |
| 99 else: | |
| 100 infile2 = pd.read_csv(infile2, sep='\t', | |
| 101 header=header, parse_dates=True) | |
| 102 loaded_df[df_key] = infile2 | |
| 103 | |
| 104 y = read_columns( | |
| 105 infile2, | |
| 106 c=c, | |
| 107 c_option=column_option, | |
| 108 sep='\t', | |
| 109 header=header, | |
| 110 parse_dates=True) | |
| 111 if len(y.shape) == 2 and y.shape[1] == 1: | |
| 112 y = y.ravel() | |
| 113 | |
| 114 return X, y | |
| 115 | |
| 116 | |
| 117 def main(inputs, infile_estimator, infile1, infile2, out_object, | |
| 118 out_weights=None): | |
| 119 """ main | |
| 120 | |
| 121 Parameters | |
| 122 ---------- | |
| 123 inputs : str | |
| 124 File path to galaxy tool parameter | |
| 125 | |
| 126 infile_estimator : str | |
| 127 File paths of input estimator | |
| 128 | |
| 129 infile1 : str | |
| 130 File path to dataset containing features | |
| 131 | |
| 132 infile2 : str | |
| 133 File path to dataset containing target labels | |
| 134 | |
| 135 out_object : str | |
| 136 File path for output of fitted model or skeleton | |
| 137 | |
| 138 out_weights : str | |
| 139 File path for output of weights | |
| 140 | |
| 141 """ | |
| 142 with open(inputs, 'r') as param_handler: | |
| 143 params = json.load(param_handler) | |
| 144 | |
| 145 # load model | |
| 146 with open(infile_estimator, 'rb') as est_handler: | |
| 147 estimator = load_model(est_handler) | |
| 148 estimator = clean_params(estimator, n_jobs=N_JOBS) | |
| 149 | |
| 150 X_train, y_train = _get_X_y(params, infile1, infile2) | |
| 151 | |
| 152 estimator.fit(X_train, y_train) | |
| 153 | |
| 154 main_est = estimator | |
| 155 if isinstance(main_est, Pipeline): | |
| 156 main_est = main_est.steps[-1][-1] | |
| 157 if hasattr(main_est, 'model_') \ | |
| 158 and hasattr(main_est, 'save_weights'): | |
| 159 if out_weights: | |
| 160 main_est.save_weights(out_weights) | |
| 161 del main_est.model_ | |
| 162 del main_est.fit_params | |
| 163 del main_est.model_class_ | |
| 164 del main_est.validation_data | |
| 165 if getattr(main_est, 'data_generator_', None): | |
| 166 del main_est.data_generator_ | |
| 167 | |
| 168 with open(out_object, 'wb') as output_handler: | |
| 169 pickle.dump(estimator, output_handler, | |
| 170 pickle.HIGHEST_PROTOCOL) | |
| 171 | |
| 172 | |
| 173 if __name__ == '__main__': | |
| 174 aparser = argparse.ArgumentParser() | |
| 175 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
| 176 aparser.add_argument("-X", "--infile_estimator", dest="infile_estimator") | |
| 177 aparser.add_argument("-y", "--infile1", dest="infile1") | |
| 178 aparser.add_argument("-g", "--infile2", dest="infile2") | |
| 179 aparser.add_argument("-o", "--out_object", dest="out_object") | |
| 180 aparser.add_argument("-t", "--out_weights", dest="out_weights") | |
| 181 args = aparser.parse_args() | |
| 182 | |
| 183 main(args.inputs, args.infile_estimator, args.infile1, | |
| 184 args.infile2, args.out_object, args.out_weights) |
