Mercurial > repos > bgruening > stacking_ensemble_models
comparison model_prediction.py @ 2:38c4f8a98038 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 5b2ac730ec6d3b762faa9034eddd19ad1b347476"
| author | bgruening |
|---|---|
| date | Mon, 16 Dec 2019 10:07:37 +0000 |
| parents | c1b0c8232816 |
| children | 0a1812986bc3 |
comparison
equal
deleted
inserted
replaced
| 1:c1b0c8232816 | 2:38c4f8a98038 |
|---|---|
| 134 options['blacklist_regions'] = None | 134 options['blacklist_regions'] = None |
| 135 | 135 |
| 136 pred_data_generator = klass( | 136 pred_data_generator = klass( |
| 137 ref_genome_path=ref_seq, vcf_path=vcf_path, **options) | 137 ref_genome_path=ref_seq, vcf_path=vcf_path, **options) |
| 138 | 138 |
| 139 pred_data_generator.fit() | 139 pred_data_generator.set_processing_attrs() |
| 140 | 140 |
| 141 preds = estimator.model_.predict_generator( | 141 variants = pred_data_generator.variants |
| 142 pred_data_generator.flow(batch_size=32), | 142 |
| 143 workers=N_JOBS, | 143 # predict 1600 sample at once then write to file |
| 144 use_multiprocessing=True) | 144 gen_flow = pred_data_generator.flow(batch_size=1600) |
| 145 | 145 |
| 146 if preds.min() < 0. or preds.max() > 1.: | 146 file_writer = open(outfile_predict, 'w') |
| 147 warnings.warn('Network returning invalid probability values. ' | 147 header_row = '\t'.join(['chrom', 'pos', 'name', 'ref', |
| 148 'The last layer might not normalize predictions ' | 148 'alt', 'strand']) |
| 149 'into probabilities ' | 149 file_writer.write(header_row) |
| 150 '(like softmax or sigmoid would).') | 150 header_done = False |
| 151 | 151 |
| 152 if params['method'] == 'predict_proba' and preds.shape[1] == 1: | 152 steps_done = 0 |
| 153 # first column is probability of class 0 and second is of class 1 | 153 |
| 154 preds = np.hstack([1 - preds, preds]) | 154 # TODO: multiple threading |
| 155 | 155 try: |
| 156 elif params['method'] == 'predict': | 156 while steps_done < len(gen_flow): |
| 157 if preds.shape[-1] > 1: | 157 index_array = next(gen_flow.index_generator) |
| 158 # if the last activation is `softmax`, the sum of all | 158 batch_X = gen_flow._get_batches_of_transformed_samples( |
| 159 # probibilities will 1, the classification is considered as | 159 index_array) |
| 160 # multi-class problem, otherwise, we take it as multi-label. | 160 |
| 161 act = getattr(estimator.model_.layers[-1], 'activation', None) | 161 if params['method'] == 'predict': |
| 162 if act and act.__name__ == 'softmax': | 162 batch_preds = estimator.predict( |
| 163 classes = preds.argmax(axis=-1) | 163 batch_X, |
| 164 # The presence of `pred_data_generator` below is to | |
| 165 # override model carrying data_generator if there | |
| 166 # is any. | |
| 167 data_generator=pred_data_generator) | |
| 164 else: | 168 else: |
| 165 preds = (preds > 0.5).astype('int32') | 169 batch_preds = estimator.predict_proba( |
| 166 else: | 170 batch_X, |
| 167 classes = (preds > 0.5).astype('int32') | 171 # The presence of `pred_data_generator` below is to |
| 168 | 172 # override model carrying data_generator if there |
| 169 preds = estimator.classes_[classes] | 173 # is any. |
| 174 data_generator=pred_data_generator) | |
| 175 | |
| 176 if batch_preds.ndim == 1: | |
| 177 batch_preds = batch_preds[:, np.newaxis] | |
| 178 | |
| 179 batch_meta = variants[index_array] | |
| 180 batch_out = np.column_stack([batch_meta, batch_preds]) | |
| 181 | |
| 182 if not header_done: | |
| 183 heads = np.arange(batch_preds.shape[-1]).astype(str) | |
| 184 heads_str = '\t'.join(heads) | |
| 185 file_writer.write("\t%s\n" % heads_str) | |
| 186 header_done = True | |
| 187 | |
| 188 for row in batch_out: | |
| 189 row_str = '\t'.join(row) | |
| 190 file_writer.write("%s\n" % row_str) | |
| 191 | |
| 192 steps_done += 1 | |
| 193 | |
| 194 finally: | |
| 195 file_writer.close() | |
| 196 # TODO: make api `pred_data_generator.close()` | |
| 197 pred_data_generator.close() | |
| 198 return 0 | |
| 170 # end input | 199 # end input |
| 171 | 200 |
| 172 # output | 201 # output |
| 173 if input_type == 'variant_effect': # TODO: save in batchs | 202 if len(preds.shape) == 1: |
| 174 rval = pd.DataFrame(preds) | |
| 175 meta = pd.DataFrame( | |
| 176 pred_data_generator.variants, | |
| 177 columns=['chrom', 'pos', 'name', 'ref', 'alt', 'strand']) | |
| 178 | |
| 179 rval = pd.concat([meta, rval], axis=1) | |
| 180 | |
| 181 elif len(preds.shape) == 1: | |
| 182 rval = pd.DataFrame(preds, columns=['Predicted']) | 203 rval = pd.DataFrame(preds, columns=['Predicted']) |
| 183 else: | 204 else: |
| 184 rval = pd.DataFrame(preds) | 205 rval = pd.DataFrame(preds) |
| 185 | 206 |
| 186 rval.to_csv(outfile_predict, sep='\t', | 207 rval.to_csv(outfile_predict, sep='\t', header=True, index=False) |
| 187 header=True, index=False) | |
| 188 | 208 |
| 189 | 209 |
| 190 if __name__ == '__main__': | 210 if __name__ == '__main__': |
| 191 aparser = argparse.ArgumentParser() | 211 aparser = argparse.ArgumentParser() |
| 192 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | 212 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) |
