Mercurial > repos > bgruening > stacking_ensemble_models
comparison train_test_eval.py @ 3:0a1812986bc3 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 9981e25b00de29ed881b2229a173a8c812ded9bb
author | bgruening |
---|---|
date | Wed, 09 Aug 2023 11:10:37 +0000 |
parents | 38c4f8a98038 |
children |
comparison
equal
deleted
inserted
replaced
2:38c4f8a98038 | 3:0a1812986bc3 |
---|---|
1 import argparse | 1 import argparse |
2 import joblib | |
3 import json | 2 import json |
4 import numpy as np | |
5 import os | 3 import os |
6 import pandas as pd | |
7 import pickle | |
8 import warnings | 4 import warnings |
9 from itertools import chain | 5 from itertools import chain |
6 | |
7 import joblib | |
8 import numpy as np | |
9 import pandas as pd | |
10 from galaxy_ml.model_persist import dump_model_to_h5, load_model_from_h5 | |
11 from galaxy_ml.model_validations import train_test_split | |
12 from galaxy_ml.utils import ( | |
13 clean_params, | |
14 get_module, | |
15 get_scoring, | |
16 read_columns, | |
17 SafeEval, | |
18 try_get_attr | |
19 ) | |
10 from scipy.io import mmread | 20 from scipy.io import mmread |
11 from sklearn.base import clone | 21 from sklearn import pipeline |
12 from sklearn import (cluster, compose, decomposition, ensemble, | |
13 feature_extraction, feature_selection, | |
14 gaussian_process, kernel_approximation, metrics, | |
15 model_selection, naive_bayes, neighbors, | |
16 pipeline, preprocessing, svm, linear_model, | |
17 tree, discriminant_analysis) | |
18 from sklearn.exceptions import FitFailedWarning | |
19 from sklearn.metrics.scorer import _check_multimetric_scoring | |
20 from sklearn.model_selection._validation import _score, cross_validate | |
21 from sklearn.model_selection import _search, _validation | 22 from sklearn.model_selection import _search, _validation |
22 from sklearn.utils import indexable, safe_indexing | 23 from sklearn.model_selection._validation import _score |
23 | 24 from sklearn.utils import _safe_indexing, indexable |
24 from galaxy_ml.model_validations import train_test_split | 25 |
25 from galaxy_ml.utils import (SafeEval, get_scoring, load_model, | 26 _fit_and_score = try_get_attr("galaxy_ml.model_validations", "_fit_and_score") |
26 read_columns, try_get_attr, get_module) | 27 setattr(_search, "_fit_and_score", _fit_and_score) |
27 | 28 setattr(_validation, "_fit_and_score", _fit_and_score) |
28 | 29 |
29 _fit_and_score = try_get_attr('galaxy_ml.model_validations', '_fit_and_score') | 30 N_JOBS = int(os.environ.get("GALAXY_SLOTS", 1)) |
30 setattr(_search, '_fit_and_score', _fit_and_score) | 31 CACHE_DIR = os.path.join(os.getcwd(), "cached") |
31 setattr(_validation, '_fit_and_score', _fit_and_score) | |
32 | |
33 N_JOBS = int(os.environ.get('GALAXY_SLOTS', 1)) | |
34 CACHE_DIR = os.path.join(os.getcwd(), 'cached') | |
35 del os | 32 del os |
36 NON_SEARCHABLE = ('n_jobs', 'pre_dispatch', 'memory', '_path', | 33 NON_SEARCHABLE = ("n_jobs", "pre_dispatch", "memory", "_path", "nthread", "callbacks") |
37 'nthread', 'callbacks') | 34 ALLOWED_CALLBACKS = ( |
38 ALLOWED_CALLBACKS = ('EarlyStopping', 'TerminateOnNaN', 'ReduceLROnPlateau', | 35 "EarlyStopping", |
39 'CSVLogger', 'None') | 36 "TerminateOnNaN", |
37 "ReduceLROnPlateau", | |
38 "CSVLogger", | |
39 "None", | |
40 ) | |
40 | 41 |
41 | 42 |
42 def _eval_swap_params(params_builder): | 43 def _eval_swap_params(params_builder): |
43 swap_params = {} | 44 swap_params = {} |
44 | 45 |
45 for p in params_builder['param_set']: | 46 for p in params_builder["param_set"]: |
46 swap_value = p['sp_value'].strip() | 47 swap_value = p["sp_value"].strip() |
47 if swap_value == '': | 48 if swap_value == "": |
48 continue | 49 continue |
49 | 50 |
50 param_name = p['sp_name'] | 51 param_name = p["sp_name"] |
51 if param_name.lower().endswith(NON_SEARCHABLE): | 52 if param_name.lower().endswith(NON_SEARCHABLE): |
52 warnings.warn("Warning: `%s` is not eligible for search and was " | 53 warnings.warn( |
53 "omitted!" % param_name) | 54 "Warning: `%s` is not eligible for search and was " |
55 "omitted!" % param_name | |
56 ) | |
54 continue | 57 continue |
55 | 58 |
56 if not swap_value.startswith(':'): | 59 if not swap_value.startswith(":"): |
57 safe_eval = SafeEval(load_scipy=True, load_numpy=True) | 60 safe_eval = SafeEval(load_scipy=True, load_numpy=True) |
58 ev = safe_eval(swap_value) | 61 ev = safe_eval(swap_value) |
59 else: | 62 else: |
60 # Have `:` before search list, asks for estimator evaluatio | 63 # Have `:` before search list, asks for estimator evaluatio |
61 safe_eval_es = SafeEval(load_estimators=True) | 64 safe_eval_es = SafeEval(load_estimators=True) |
78 if arr is None: | 81 if arr is None: |
79 nones.append(idx) | 82 nones.append(idx) |
80 else: | 83 else: |
81 new_arrays.append(arr) | 84 new_arrays.append(arr) |
82 | 85 |
83 if kwargs['shuffle'] == 'None': | 86 if kwargs["shuffle"] == "None": |
84 kwargs['shuffle'] = None | 87 kwargs["shuffle"] = None |
85 | 88 |
86 group_names = kwargs.pop('group_names', None) | 89 group_names = kwargs.pop("group_names", None) |
87 | 90 |
88 if group_names is not None and group_names.strip(): | 91 if group_names is not None and group_names.strip(): |
89 group_names = [name.strip() for name in | 92 group_names = [name.strip() for name in group_names.split(",")] |
90 group_names.split(',')] | |
91 new_arrays = indexable(*new_arrays) | 93 new_arrays = indexable(*new_arrays) |
92 groups = kwargs['labels'] | 94 groups = kwargs["labels"] |
93 n_samples = new_arrays[0].shape[0] | 95 n_samples = new_arrays[0].shape[0] |
94 index_arr = np.arange(n_samples) | 96 index_arr = np.arange(n_samples) |
95 test = index_arr[np.isin(groups, group_names)] | 97 test = index_arr[np.isin(groups, group_names)] |
96 train = index_arr[~np.isin(groups, group_names)] | 98 train = index_arr[~np.isin(groups, group_names)] |
97 rval = list(chain.from_iterable( | 99 rval = list( |
98 (safe_indexing(a, train), | 100 chain.from_iterable( |
99 safe_indexing(a, test)) for a in new_arrays)) | 101 (_safe_indexing(a, train), _safe_indexing(a, test)) for a in new_arrays |
102 ) | |
103 ) | |
100 else: | 104 else: |
101 rval = train_test_split(*new_arrays, **kwargs) | 105 rval = train_test_split(*new_arrays, **kwargs) |
102 | 106 |
103 for pos in nones: | 107 for pos in nones: |
104 rval[pos * 2: 2] = [None, None] | 108 rval[pos * 2: 2] = [None, None] |
105 | 109 |
106 return rval | 110 return rval |
107 | 111 |
108 | 112 |
109 def main(inputs, infile_estimator, infile1, infile2, | 113 def main( |
110 outfile_result, outfile_object=None, | 114 inputs, |
111 outfile_weights=None, groups=None, | 115 infile_estimator, |
112 ref_seq=None, intervals=None, targets=None, | 116 infile1, |
113 fasta_path=None): | 117 infile2, |
118 outfile_result, | |
119 outfile_object=None, | |
120 outfile_weights=None, | |
121 groups=None, | |
122 ref_seq=None, | |
123 intervals=None, | |
124 targets=None, | |
125 fasta_path=None, | |
126 ): | |
114 """ | 127 """ |
115 Parameter | 128 Parameter |
116 --------- | 129 --------- |
117 inputs : str | 130 inputs : str |
118 File path to galaxy tool parameter | 131 File path to galaxy tool parameter |
148 File path to dataset compressed target bed file | 161 File path to dataset compressed target bed file |
149 | 162 |
150 fasta_path : str | 163 fasta_path : str |
151 File path to dataset containing fasta file | 164 File path to dataset containing fasta file |
152 """ | 165 """ |
153 warnings.simplefilter('ignore') | 166 warnings.simplefilter("ignore") |
154 | 167 |
155 with open(inputs, 'r') as param_handler: | 168 with open(inputs, "r") as param_handler: |
156 params = json.load(param_handler) | 169 params = json.load(param_handler) |
157 | 170 |
158 # load estimator | 171 # load estimator |
159 with open(infile_estimator, 'rb') as estimator_handler: | 172 estimator = load_model_from_h5(infile_estimator) |
160 estimator = load_model(estimator_handler) | 173 estimator = clean_params(estimator) |
161 | 174 |
162 # swap hyperparameter | 175 # swap hyperparameter |
163 swapping = params['experiment_schemes']['hyperparams_swapping'] | 176 swapping = params["experiment_schemes"]["hyperparams_swapping"] |
164 swap_params = _eval_swap_params(swapping) | 177 swap_params = _eval_swap_params(swapping) |
165 estimator.set_params(**swap_params) | 178 estimator.set_params(**swap_params) |
166 | 179 |
167 estimator_params = estimator.get_params() | 180 estimator_params = estimator.get_params() |
168 | 181 |
169 # store read dataframe object | 182 # store read dataframe object |
170 loaded_df = {} | 183 loaded_df = {} |
171 | 184 |
172 input_type = params['input_options']['selected_input'] | 185 input_type = params["input_options"]["selected_input"] |
173 # tabular input | 186 # tabular input |
174 if input_type == 'tabular': | 187 if input_type == "tabular": |
175 header = 'infer' if params['input_options']['header1'] else None | 188 header = "infer" if params["input_options"]["header1"] else None |
176 column_option = (params['input_options']['column_selector_options_1'] | 189 column_option = params["input_options"]["column_selector_options_1"][ |
177 ['selected_column_selector_option']) | 190 "selected_column_selector_option" |
178 if column_option in ['by_index_number', 'all_but_by_index_number', | 191 ] |
179 'by_header_name', 'all_but_by_header_name']: | 192 if column_option in [ |
180 c = params['input_options']['column_selector_options_1']['col1'] | 193 "by_index_number", |
194 "all_but_by_index_number", | |
195 "by_header_name", | |
196 "all_but_by_header_name", | |
197 ]: | |
198 c = params["input_options"]["column_selector_options_1"]["col1"] | |
181 else: | 199 else: |
182 c = None | 200 c = None |
183 | 201 |
184 df_key = infile1 + repr(header) | 202 df_key = infile1 + repr(header) |
185 df = pd.read_csv(infile1, sep='\t', header=header, | 203 df = pd.read_csv(infile1, sep="\t", header=header, parse_dates=True) |
186 parse_dates=True) | |
187 loaded_df[df_key] = df | 204 loaded_df[df_key] = df |
188 | 205 |
189 X = read_columns(df, c=c, c_option=column_option).astype(float) | 206 X = read_columns(df, c=c, c_option=column_option).astype(float) |
190 # sparse input | 207 # sparse input |
191 elif input_type == 'sparse': | 208 elif input_type == "sparse": |
192 X = mmread(open(infile1, 'r')) | 209 X = mmread(open(infile1, "r")) |
193 | 210 |
194 # fasta_file input | 211 # fasta_file input |
195 elif input_type == 'seq_fasta': | 212 elif input_type == "seq_fasta": |
196 pyfaidx = get_module('pyfaidx') | 213 pyfaidx = get_module("pyfaidx") |
197 sequences = pyfaidx.Fasta(fasta_path) | 214 sequences = pyfaidx.Fasta(fasta_path) |
198 n_seqs = len(sequences.keys()) | 215 n_seqs = len(sequences.keys()) |
199 X = np.arange(n_seqs)[:, np.newaxis] | 216 X = np.arange(n_seqs)[:, np.newaxis] |
200 for param in estimator_params.keys(): | 217 for param in estimator_params.keys(): |
201 if param.endswith('fasta_path'): | 218 if param.endswith("fasta_path"): |
202 estimator.set_params( | 219 estimator.set_params(**{param: fasta_path}) |
203 **{param: fasta_path}) | |
204 break | 220 break |
205 else: | 221 else: |
206 raise ValueError( | 222 raise ValueError( |
207 "The selected estimator doesn't support " | 223 "The selected estimator doesn't support " |
208 "fasta file input! Please consider using " | 224 "fasta file input! Please consider using " |
209 "KerasGBatchClassifier with " | 225 "KerasGBatchClassifier with " |
210 "FastaDNABatchGenerator/FastaProteinBatchGenerator " | 226 "FastaDNABatchGenerator/FastaProteinBatchGenerator " |
211 "or having GenomeOneHotEncoder/ProteinOneHotEncoder " | 227 "or having GenomeOneHotEncoder/ProteinOneHotEncoder " |
212 "in pipeline!") | 228 "in pipeline!" |
213 | 229 ) |
214 elif input_type == 'refseq_and_interval': | 230 |
231 elif input_type == "refseq_and_interval": | |
215 path_params = { | 232 path_params = { |
216 'data_batch_generator__ref_genome_path': ref_seq, | 233 "data_batch_generator__ref_genome_path": ref_seq, |
217 'data_batch_generator__intervals_path': intervals, | 234 "data_batch_generator__intervals_path": intervals, |
218 'data_batch_generator__target_path': targets | 235 "data_batch_generator__target_path": targets, |
219 } | 236 } |
220 estimator.set_params(**path_params) | 237 estimator.set_params(**path_params) |
221 n_intervals = sum(1 for line in open(intervals)) | 238 n_intervals = sum(1 for line in open(intervals)) |
222 X = np.arange(n_intervals)[:, np.newaxis] | 239 X = np.arange(n_intervals)[:, np.newaxis] |
223 | 240 |
224 # Get target y | 241 # Get target y |
225 header = 'infer' if params['input_options']['header2'] else None | 242 header = "infer" if params["input_options"]["header2"] else None |
226 column_option = (params['input_options']['column_selector_options_2'] | 243 column_option = params["input_options"]["column_selector_options_2"][ |
227 ['selected_column_selector_option2']) | 244 "selected_column_selector_option2" |
228 if column_option in ['by_index_number', 'all_but_by_index_number', | 245 ] |
229 'by_header_name', 'all_but_by_header_name']: | 246 if column_option in [ |
230 c = params['input_options']['column_selector_options_2']['col2'] | 247 "by_index_number", |
248 "all_but_by_index_number", | |
249 "by_header_name", | |
250 "all_but_by_header_name", | |
251 ]: | |
252 c = params["input_options"]["column_selector_options_2"]["col2"] | |
231 else: | 253 else: |
232 c = None | 254 c = None |
233 | 255 |
234 df_key = infile2 + repr(header) | 256 df_key = infile2 + repr(header) |
235 if df_key in loaded_df: | 257 if df_key in loaded_df: |
236 infile2 = loaded_df[df_key] | 258 infile2 = loaded_df[df_key] |
237 else: | 259 else: |
238 infile2 = pd.read_csv(infile2, sep='\t', | 260 infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) |
239 header=header, parse_dates=True) | |
240 loaded_df[df_key] = infile2 | 261 loaded_df[df_key] = infile2 |
241 | 262 |
242 y = read_columns( | 263 y = read_columns( |
243 infile2, | 264 infile2, c=c, c_option=column_option, sep="\t", header=header, parse_dates=True |
244 c=c, | 265 ) |
245 c_option=column_option, | |
246 sep='\t', | |
247 header=header, | |
248 parse_dates=True) | |
249 if len(y.shape) == 2 and y.shape[1] == 1: | 266 if len(y.shape) == 2 and y.shape[1] == 1: |
250 y = y.ravel() | 267 y = y.ravel() |
251 if input_type == 'refseq_and_interval': | 268 if input_type == "refseq_and_interval": |
252 estimator.set_params( | 269 estimator.set_params(data_batch_generator__features=y.ravel().tolist()) |
253 data_batch_generator__features=y.ravel().tolist()) | |
254 y = None | 270 y = None |
255 # end y | 271 # end y |
256 | 272 |
257 # load groups | 273 # load groups |
258 if groups: | 274 if groups: |
259 groups_selector = (params['experiment_schemes']['test_split'] | 275 groups_selector = ( |
260 ['split_algos']).pop('groups_selector') | 276 params["experiment_schemes"]["test_split"]["split_algos"] |
261 | 277 ).pop("groups_selector") |
262 header = 'infer' if groups_selector['header_g'] else None | 278 |
263 column_option = \ | 279 header = "infer" if groups_selector["header_g"] else None |
264 (groups_selector['column_selector_options_g'] | 280 column_option = groups_selector["column_selector_options_g"][ |
265 ['selected_column_selector_option_g']) | 281 "selected_column_selector_option_g" |
266 if column_option in ['by_index_number', 'all_but_by_index_number', | 282 ] |
267 'by_header_name', 'all_but_by_header_name']: | 283 if column_option in [ |
268 c = groups_selector['column_selector_options_g']['col_g'] | 284 "by_index_number", |
285 "all_but_by_index_number", | |
286 "by_header_name", | |
287 "all_but_by_header_name", | |
288 ]: | |
289 c = groups_selector["column_selector_options_g"]["col_g"] | |
269 else: | 290 else: |
270 c = None | 291 c = None |
271 | 292 |
272 df_key = groups + repr(header) | 293 df_key = groups + repr(header) |
273 if df_key in loaded_df: | 294 if df_key in loaded_df: |
274 groups = loaded_df[df_key] | 295 groups = loaded_df[df_key] |
275 | 296 |
276 groups = read_columns( | 297 groups = read_columns( |
277 groups, | 298 groups, |
278 c=c, | 299 c=c, |
279 c_option=column_option, | 300 c_option=column_option, |
280 sep='\t', | 301 sep="\t", |
281 header=header, | 302 header=header, |
282 parse_dates=True) | 303 parse_dates=True, |
304 ) | |
283 groups = groups.ravel() | 305 groups = groups.ravel() |
284 | 306 |
285 # del loaded_df | 307 # del loaded_df |
286 del loaded_df | 308 del loaded_df |
287 | 309 |
288 # handle memory | 310 # handle memory |
289 memory = joblib.Memory(location=CACHE_DIR, verbose=0) | 311 memory = joblib.Memory(location=CACHE_DIR, verbose=0) |
290 # cache iraps_core fits could increase search speed significantly | 312 # cache iraps_core fits could increase search speed significantly |
291 if estimator.__class__.__name__ == 'IRAPSClassifier': | 313 if estimator.__class__.__name__ == "IRAPSClassifier": |
292 estimator.set_params(memory=memory) | 314 estimator.set_params(memory=memory) |
293 else: | 315 else: |
294 # For iraps buried in pipeline | 316 # For iraps buried in pipeline |
295 new_params = {} | 317 new_params = {} |
296 for p, v in estimator_params.items(): | 318 for p, v in estimator_params.items(): |
297 if p.endswith('memory'): | 319 if p.endswith("memory"): |
298 # for case of `__irapsclassifier__memory` | 320 # for case of `__irapsclassifier__memory` |
299 if len(p) > 8 and p[:-8].endswith('irapsclassifier'): | 321 if len(p) > 8 and p[:-8].endswith("irapsclassifier"): |
300 # cache iraps_core fits could increase search | 322 # cache iraps_core fits could increase search |
301 # speed significantly | 323 # speed significantly |
302 new_params[p] = memory | 324 new_params[p] = memory |
303 # security reason, we don't want memory being | 325 # security reason, we don't want memory being |
304 # modified unexpectedly | 326 # modified unexpectedly |
305 elif v: | 327 elif v: |
306 new_params[p] = None | 328 new_params[p] = None |
307 # handle n_jobs | 329 # handle n_jobs |
308 elif p.endswith('n_jobs'): | 330 elif p.endswith("n_jobs"): |
309 # For now, 1 CPU is suggested for iprasclassifier | 331 # For now, 1 CPU is suggested for iprasclassifier |
310 if len(p) > 8 and p[:-8].endswith('irapsclassifier'): | 332 if len(p) > 8 and p[:-8].endswith("irapsclassifier"): |
311 new_params[p] = 1 | 333 new_params[p] = 1 |
312 else: | 334 else: |
313 new_params[p] = N_JOBS | 335 new_params[p] = N_JOBS |
314 # for security reason, types of callback are limited | 336 # for security reason, types of callback are limited |
315 elif p.endswith('callbacks'): | 337 elif p.endswith("callbacks"): |
316 for cb in v: | 338 for cb in v: |
317 cb_type = cb['callback_selection']['callback_type'] | 339 cb_type = cb["callback_selection"]["callback_type"] |
318 if cb_type not in ALLOWED_CALLBACKS: | 340 if cb_type not in ALLOWED_CALLBACKS: |
319 raise ValueError( | 341 raise ValueError("Prohibited callback type: %s!" % cb_type) |
320 "Prohibited callback type: %s!" % cb_type) | |
321 | 342 |
322 estimator.set_params(**new_params) | 343 estimator.set_params(**new_params) |
323 | 344 |
324 # handle scorer, convert to scorer dict | 345 # handle scorer, convert to scorer dict |
325 scoring = params['experiment_schemes']['metrics']['scoring'] | 346 # Check if scoring is specified |
347 scoring = params["experiment_schemes"]["metrics"].get("scoring", None) | |
348 if scoring is not None: | |
349 # get_scoring() expects secondary_scoring to be a comma separated string (not a list) | |
350 # Check if secondary_scoring is specified | |
351 secondary_scoring = scoring.get("secondary_scoring", None) | |
352 if secondary_scoring is not None: | |
353 # If secondary_scoring is specified, convert the list into comman separated string | |
354 scoring["secondary_scoring"] = ",".join(scoring["secondary_scoring"]) | |
326 scorer = get_scoring(scoring) | 355 scorer = get_scoring(scoring) |
327 scorer, _ = _check_multimetric_scoring(estimator, scoring=scorer) | |
328 | 356 |
329 # handle test (first) split | 357 # handle test (first) split |
330 test_split_options = (params['experiment_schemes'] | 358 test_split_options = params["experiment_schemes"]["test_split"]["split_algos"] |
331 ['test_split']['split_algos']) | 359 |
332 | 360 if test_split_options["shuffle"] == "group": |
333 if test_split_options['shuffle'] == 'group': | 361 test_split_options["labels"] = groups |
334 test_split_options['labels'] = groups | 362 if test_split_options["shuffle"] == "stratified": |
335 if test_split_options['shuffle'] == 'stratified': | |
336 if y is not None: | 363 if y is not None: |
337 test_split_options['labels'] = y | 364 test_split_options["labels"] = y |
338 else: | 365 else: |
339 raise ValueError("Stratified shuffle split is not " | 366 raise ValueError( |
340 "applicable on empty target values!") | 367 "Stratified shuffle split is not " "applicable on empty target values!" |
341 | 368 ) |
342 X_train, X_test, y_train, y_test, groups_train, groups_test = \ | 369 |
343 train_test_split_none(X, y, groups, **test_split_options) | 370 ( |
344 | 371 X_train, |
345 exp_scheme = params['experiment_schemes']['selected_exp_scheme'] | 372 X_test, |
373 y_train, | |
374 y_test, | |
375 groups_train, | |
376 _groups_test, | |
377 ) = train_test_split_none(X, y, groups, **test_split_options) | |
378 | |
379 exp_scheme = params["experiment_schemes"]["selected_exp_scheme"] | |
346 | 380 |
347 # handle validation (second) split | 381 # handle validation (second) split |
348 if exp_scheme == 'train_val_test': | 382 if exp_scheme == "train_val_test": |
349 val_split_options = (params['experiment_schemes'] | 383 val_split_options = params["experiment_schemes"]["val_split"]["split_algos"] |
350 ['val_split']['split_algos']) | 384 |
351 | 385 if val_split_options["shuffle"] == "group": |
352 if val_split_options['shuffle'] == 'group': | 386 val_split_options["labels"] = groups_train |
353 val_split_options['labels'] = groups_train | 387 if val_split_options["shuffle"] == "stratified": |
354 if val_split_options['shuffle'] == 'stratified': | |
355 if y_train is not None: | 388 if y_train is not None: |
356 val_split_options['labels'] = y_train | 389 val_split_options["labels"] = y_train |
357 else: | 390 else: |
358 raise ValueError("Stratified shuffle split is not " | 391 raise ValueError( |
359 "applicable on empty target values!") | 392 "Stratified shuffle split is not " |
360 | 393 "applicable on empty target values!" |
361 X_train, X_val, y_train, y_val, groups_train, groups_val = \ | 394 ) |
362 train_test_split_none(X_train, y_train, groups_train, | 395 |
363 **val_split_options) | 396 ( |
397 X_train, | |
398 X_val, | |
399 y_train, | |
400 y_val, | |
401 groups_train, | |
402 _groups_val, | |
403 ) = train_test_split_none(X_train, y_train, groups_train, **val_split_options) | |
364 | 404 |
365 # train and eval | 405 # train and eval |
366 if hasattr(estimator, 'validation_data'): | 406 if hasattr(estimator, "validation_data"): |
367 if exp_scheme == 'train_val_test': | 407 if exp_scheme == "train_val_test": |
368 estimator.fit(X_train, y_train, | 408 estimator.fit(X_train, y_train, validation_data=(X_val, y_val)) |
369 validation_data=(X_val, y_val)) | 409 else: |
370 else: | 410 estimator.fit(X_train, y_train, validation_data=(X_test, y_test)) |
371 estimator.fit(X_train, y_train, | |
372 validation_data=(X_test, y_test)) | |
373 else: | 411 else: |
374 estimator.fit(X_train, y_train) | 412 estimator.fit(X_train, y_train) |
375 | 413 |
376 if hasattr(estimator, 'evaluate'): | 414 if hasattr(estimator, "evaluate"): |
377 scores = estimator.evaluate(X_test, y_test=y_test, | 415 scores = estimator.evaluate( |
378 scorer=scorer, | 416 X_test, y_test=y_test, scorer=scorer, is_multimetric=True |
379 is_multimetric=True) | 417 ) |
380 else: | 418 else: |
381 scores = _score(estimator, X_test, y_test, scorer, | 419 scores = _score(estimator, X_test, y_test, scorer) |
382 is_multimetric=True) | |
383 # handle output | 420 # handle output |
384 for name, score in scores.items(): | 421 for name, score in scores.items(): |
385 scores[name] = [score] | 422 scores[name] = [score] |
386 df = pd.DataFrame(scores) | 423 df = pd.DataFrame(scores) |
387 df = df[sorted(df.columns)] | 424 df = df[sorted(df.columns)] |
388 df.to_csv(path_or_buf=outfile_result, sep='\t', | 425 df.to_csv(path_or_buf=outfile_result, sep="\t", header=True, index=False) |
389 header=True, index=False) | |
390 | 426 |
391 memory.clear(warn=False) | 427 memory.clear(warn=False) |
392 | 428 |
393 if outfile_object: | 429 if outfile_object: |
394 main_est = estimator | 430 main_est = estimator |
395 if isinstance(estimator, pipeline.Pipeline): | 431 if isinstance(estimator, pipeline.Pipeline): |
396 main_est = estimator.steps[-1][-1] | 432 main_est = estimator.steps[-1][-1] |
397 | 433 |
398 if hasattr(main_est, 'model_') \ | 434 if hasattr(main_est, "model_") and hasattr(main_est, "save_weights"): |
399 and hasattr(main_est, 'save_weights'): | |
400 if outfile_weights: | 435 if outfile_weights: |
401 main_est.save_weights(outfile_weights) | 436 main_est.save_weights(outfile_weights) |
402 del main_est.model_ | 437 if getattr(main_est, "model_", None): |
403 del main_est.fit_params | 438 del main_est.model_ |
404 del main_est.model_class_ | 439 if getattr(main_est, "fit_params", None): |
405 del main_est.validation_data | 440 del main_est.fit_params |
406 if getattr(main_est, 'data_generator_', None): | 441 if getattr(main_est, "model_class_", None): |
442 del main_est.model_class_ | |
443 if getattr(main_est, "validation_data", None): | |
444 del main_est.validation_data | |
445 if getattr(main_est, "data_generator_", None): | |
407 del main_est.data_generator_ | 446 del main_est.data_generator_ |
408 | 447 |
409 with open(outfile_object, 'wb') as output_handler: | 448 dump_model_to_h5(estimator, outfile_object) |
410 pickle.dump(estimator, output_handler, | 449 |
411 pickle.HIGHEST_PROTOCOL) | 450 |
412 | 451 if __name__ == "__main__": |
413 | |
414 if __name__ == '__main__': | |
415 aparser = argparse.ArgumentParser() | 452 aparser = argparse.ArgumentParser() |
416 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | 453 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) |
417 aparser.add_argument("-e", "--estimator", dest="infile_estimator") | 454 aparser.add_argument("-e", "--estimator", dest="infile_estimator") |
418 aparser.add_argument("-X", "--infile1", dest="infile1") | 455 aparser.add_argument("-X", "--infile1", dest="infile1") |
419 aparser.add_argument("-y", "--infile2", dest="infile2") | 456 aparser.add_argument("-y", "--infile2", dest="infile2") |
425 aparser.add_argument("-b", "--intervals", dest="intervals") | 462 aparser.add_argument("-b", "--intervals", dest="intervals") |
426 aparser.add_argument("-t", "--targets", dest="targets") | 463 aparser.add_argument("-t", "--targets", dest="targets") |
427 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") | 464 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") |
428 args = aparser.parse_args() | 465 args = aparser.parse_args() |
429 | 466 |
430 main(args.inputs, args.infile_estimator, args.infile1, args.infile2, | 467 main( |
431 args.outfile_result, outfile_object=args.outfile_object, | 468 args.inputs, |
432 outfile_weights=args.outfile_weights, groups=args.groups, | 469 args.infile_estimator, |
433 ref_seq=args.ref_seq, intervals=args.intervals, | 470 args.infile1, |
434 targets=args.targets, fasta_path=args.fasta_path) | 471 args.infile2, |
472 args.outfile_result, | |
473 outfile_object=args.outfile_object, | |
474 outfile_weights=args.outfile_weights, | |
475 groups=args.groups, | |
476 ref_seq=args.ref_seq, | |
477 intervals=args.intervals, | |
478 targets=args.targets, | |
479 fasta_path=args.fasta_path, | |
480 ) |