Mercurial > repos > bgruening > stacking_ensemble_models
comparison association_rules.py @ 3:0a1812986bc3 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 9981e25b00de29ed881b2229a173a8c812ded9bb
| author | bgruening |
|---|---|
| date | Wed, 09 Aug 2023 11:10:37 +0000 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 2:38c4f8a98038 | 3:0a1812986bc3 |
|---|---|
| 1 import argparse | |
| 2 import json | |
| 3 import warnings | |
| 4 | |
| 5 import pandas as pd | |
| 6 from mlxtend.frequent_patterns import association_rules, fpgrowth | |
| 7 from mlxtend.preprocessing import TransactionEncoder | |
| 8 | |
| 9 | |
| 10 def main( | |
| 11 inputs, | |
| 12 infile, | |
| 13 outfile, | |
| 14 min_support=0.5, | |
| 15 min_confidence=0.5, | |
| 16 min_lift=1.0, | |
| 17 min_conviction=1.0, | |
| 18 max_length=None, | |
| 19 ): | |
| 20 """ | |
| 21 Parameter | |
| 22 --------- | |
| 23 input : str | |
| 24 File path to galaxy tool parameter | |
| 25 | |
| 26 infile : str | |
| 27 File paths of input vector | |
| 28 | |
| 29 outfile : str | |
| 30 File path to output matrix | |
| 31 | |
| 32 min_support: float | |
| 33 Minimum support | |
| 34 | |
| 35 min_confidence: float | |
| 36 Minimum confidence | |
| 37 | |
| 38 min_lift: float | |
| 39 Minimum lift | |
| 40 | |
| 41 min_conviction: float | |
| 42 Minimum conviction | |
| 43 | |
| 44 max_length: int | |
| 45 Maximum length | |
| 46 | |
| 47 """ | |
| 48 warnings.simplefilter("ignore") | |
| 49 | |
| 50 with open(inputs, "r") as param_handler: | |
| 51 params = json.load(param_handler) | |
| 52 | |
| 53 input_header = params["header0"] | |
| 54 header = "infer" if input_header else None | |
| 55 | |
| 56 with open(infile) as fp: | |
| 57 lines = fp.read().splitlines() | |
| 58 | |
| 59 if header is not None: | |
| 60 lines = lines[1:] | |
| 61 | |
| 62 dataset = [] | |
| 63 for line in lines: | |
| 64 line_items = line.split("\t") | |
| 65 dataset.append(line_items) | |
| 66 | |
| 67 # TransactionEncoder learns the unique labels in the dataset and transforms the | |
| 68 # input dataset (a Python list of lists) into a one-hot encoded NumPy boolean array | |
| 69 te = TransactionEncoder() | |
| 70 te_ary = te.fit_transform(dataset) | |
| 71 | |
| 72 # Turn the encoded NumPy array into a DataFrame | |
| 73 df = pd.DataFrame(te_ary, columns=te.columns_) | |
| 74 | |
| 75 # Extract frequent itemsets for association rule mining | |
| 76 # use_colnames: Use DataFrames' column names in the returned DataFrame instead of column indices | |
| 77 frequent_itemsets = fpgrowth( | |
| 78 df, min_support=min_support, use_colnames=True, max_len=max_length | |
| 79 ) | |
| 80 | |
| 81 # Get association rules, with confidence larger than min_confidence | |
| 82 rules = association_rules( | |
| 83 frequent_itemsets, metric="confidence", min_threshold=min_confidence | |
| 84 ) | |
| 85 | |
| 86 # Filter association rules, keeping rules with lift and conviction larger than min_liftand and min_conviction | |
| 87 rules = rules[(rules["lift"] >= min_lift) & (rules["conviction"] >= min_conviction)] | |
| 88 | |
| 89 # Convert columns from frozenset to list (more readable) | |
| 90 rules["antecedents"] = rules["antecedents"].apply(list) | |
| 91 rules["consequents"] = rules["consequents"].apply(list) | |
| 92 | |
| 93 # The next 3 steps are intended to fix the order of the association | |
| 94 # rules generated, so tests that rely on diff'ing a desired output | |
| 95 # with an expected output can pass | |
| 96 | |
| 97 # 1) Sort entry in every row/column for columns 'antecedents' and 'consequents' | |
| 98 rules["antecedents"] = rules["antecedents"].apply(lambda row: sorted(row)) | |
| 99 rules["consequents"] = rules["consequents"].apply(lambda row: sorted(row)) | |
| 100 | |
| 101 # 2) Create two temporary string columns to sort on | |
| 102 rules["ant_str"] = rules["antecedents"].apply(lambda row: " ".join(row)) | |
| 103 rules["con_str"] = rules["consequents"].apply(lambda row: " ".join(row)) | |
| 104 | |
| 105 # 3) Sort results so they are re-producable | |
| 106 rules.sort_values(by=["ant_str", "con_str"], inplace=True) | |
| 107 del rules["ant_str"] | |
| 108 del rules["con_str"] | |
| 109 rules.reset_index(drop=True, inplace=True) | |
| 110 | |
| 111 # Write association rules and metrics to file | |
| 112 rules.to_csv(outfile, sep="\t", index=False) | |
| 113 | |
| 114 | |
| 115 if __name__ == "__main__": | |
| 116 aparser = argparse.ArgumentParser() | |
| 117 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
| 118 aparser.add_argument("-y", "--infile", dest="infile", required=True) | |
| 119 aparser.add_argument("-o", "--outfile", dest="outfile", required=True) | |
| 120 aparser.add_argument("-s", "--support", dest="support", default=0.5) | |
| 121 aparser.add_argument("-c", "--confidence", dest="confidence", default=0.5) | |
| 122 aparser.add_argument("-l", "--lift", dest="lift", default=1.0) | |
| 123 aparser.add_argument("-v", "--conviction", dest="conviction", default=1.0) | |
| 124 aparser.add_argument("-t", "--length", dest="length", default=5) | |
| 125 args = aparser.parse_args() | |
| 126 | |
| 127 main( | |
| 128 args.inputs, | |
| 129 args.infile, | |
| 130 args.outfile, | |
| 131 min_support=float(args.support), | |
| 132 min_confidence=float(args.confidence), | |
| 133 min_lift=float(args.lift), | |
| 134 min_conviction=float(args.conviction), | |
| 135 max_length=int(args.length), | |
| 136 ) |
