Mercurial > repos > bgruening > sklearn_train_test_split
comparison association_rules.py @ 11:82f89e379413 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 9981e25b00de29ed881b2229a173a8c812ded9bb
| author | bgruening |
|---|---|
| date | Wed, 09 Aug 2023 12:17:49 +0000 |
| parents | 5958c4ef839d |
| children |
comparison
equal
deleted
inserted
replaced
| 10:baafbaaf6cce | 11:82f89e379413 |
|---|---|
| 5 import pandas as pd | 5 import pandas as pd |
| 6 from mlxtend.frequent_patterns import association_rules, fpgrowth | 6 from mlxtend.frequent_patterns import association_rules, fpgrowth |
| 7 from mlxtend.preprocessing import TransactionEncoder | 7 from mlxtend.preprocessing import TransactionEncoder |
| 8 | 8 |
| 9 | 9 |
| 10 def main(inputs, infile, outfile, min_support=0.5, min_confidence=0.5, min_lift=1.0, min_conviction=1.0, max_length=None): | 10 def main( |
| 11 inputs, | |
| 12 infile, | |
| 13 outfile, | |
| 14 min_support=0.5, | |
| 15 min_confidence=0.5, | |
| 16 min_lift=1.0, | |
| 17 min_conviction=1.0, | |
| 18 max_length=None, | |
| 19 ): | |
| 11 """ | 20 """ |
| 12 Parameter | 21 Parameter |
| 13 --------- | 22 --------- |
| 14 input : str | 23 input : str |
| 15 File path to galaxy tool parameter | 24 File path to galaxy tool parameter |
| 34 | 43 |
| 35 max_length: int | 44 max_length: int |
| 36 Maximum length | 45 Maximum length |
| 37 | 46 |
| 38 """ | 47 """ |
| 39 warnings.simplefilter('ignore') | 48 warnings.simplefilter("ignore") |
| 40 | 49 |
| 41 with open(inputs, 'r') as param_handler: | 50 with open(inputs, "r") as param_handler: |
| 42 params = json.load(param_handler) | 51 params = json.load(param_handler) |
| 43 | 52 |
| 44 input_header = params['header0'] | 53 input_header = params["header0"] |
| 45 header = 'infer' if input_header else None | 54 header = "infer" if input_header else None |
| 46 | 55 |
| 47 with open(infile) as fp: | 56 with open(infile) as fp: |
| 48 lines = fp.read().splitlines() | 57 lines = fp.read().splitlines() |
| 49 | 58 |
| 50 if header is not None: | 59 if header is not None: |
| 63 # Turn the encoded NumPy array into a DataFrame | 72 # Turn the encoded NumPy array into a DataFrame |
| 64 df = pd.DataFrame(te_ary, columns=te.columns_) | 73 df = pd.DataFrame(te_ary, columns=te.columns_) |
| 65 | 74 |
| 66 # Extract frequent itemsets for association rule mining | 75 # Extract frequent itemsets for association rule mining |
| 67 # use_colnames: Use DataFrames' column names in the returned DataFrame instead of column indices | 76 # use_colnames: Use DataFrames' column names in the returned DataFrame instead of column indices |
| 68 frequent_itemsets = fpgrowth(df, min_support=min_support, use_colnames=True, max_len=max_length) | 77 frequent_itemsets = fpgrowth( |
| 78 df, min_support=min_support, use_colnames=True, max_len=max_length | |
| 79 ) | |
| 69 | 80 |
| 70 # Get association rules, with confidence larger than min_confidence | 81 # Get association rules, with confidence larger than min_confidence |
| 71 rules = association_rules(frequent_itemsets, metric="confidence", min_threshold=min_confidence) | 82 rules = association_rules( |
| 83 frequent_itemsets, metric="confidence", min_threshold=min_confidence | |
| 84 ) | |
| 72 | 85 |
| 73 # Filter association rules, keeping rules with lift and conviction larger than min_liftand and min_conviction | 86 # Filter association rules, keeping rules with lift and conviction larger than min_liftand and min_conviction |
| 74 rules = rules[(rules['lift'] >= min_lift) & (rules['conviction'] >= min_conviction)] | 87 rules = rules[(rules["lift"] >= min_lift) & (rules["conviction"] >= min_conviction)] |
| 75 | 88 |
| 76 # Convert columns from frozenset to list (more readable) | 89 # Convert columns from frozenset to list (more readable) |
| 77 rules['antecedents'] = rules['antecedents'].apply(list) | 90 rules["antecedents"] = rules["antecedents"].apply(list) |
| 78 rules['consequents'] = rules['consequents'].apply(list) | 91 rules["consequents"] = rules["consequents"].apply(list) |
| 79 | 92 |
| 80 # The next 3 steps are intended to fix the order of the association | 93 # The next 3 steps are intended to fix the order of the association |
| 81 # rules generated, so tests that rely on diff'ing a desired output | 94 # rules generated, so tests that rely on diff'ing a desired output |
| 82 # with an expected output can pass | 95 # with an expected output can pass |
| 83 | 96 |
| 84 # 1) Sort entry in every row/column for columns 'antecedents' and 'consequents' | 97 # 1) Sort entry in every row/column for columns 'antecedents' and 'consequents' |
| 85 rules['antecedents'] = rules['antecedents'].apply(lambda row: sorted(row)) | 98 rules["antecedents"] = rules["antecedents"].apply(lambda row: sorted(row)) |
| 86 rules['consequents'] = rules['consequents'].apply(lambda row: sorted(row)) | 99 rules["consequents"] = rules["consequents"].apply(lambda row: sorted(row)) |
| 87 | 100 |
| 88 # 2) Create two temporary string columns to sort on | 101 # 2) Create two temporary string columns to sort on |
| 89 rules['ant_str'] = rules['antecedents'].apply(lambda row: " ".join(row)) | 102 rules["ant_str"] = rules["antecedents"].apply(lambda row: " ".join(row)) |
| 90 rules['con_str'] = rules['consequents'].apply(lambda row: " ".join(row)) | 103 rules["con_str"] = rules["consequents"].apply(lambda row: " ".join(row)) |
| 91 | 104 |
| 92 # 3) Sort results so they are re-producable | 105 # 3) Sort results so they are re-producable |
| 93 rules.sort_values(by=['ant_str', 'con_str'], inplace=True) | 106 rules.sort_values(by=["ant_str", "con_str"], inplace=True) |
| 94 del rules['ant_str'] | 107 del rules["ant_str"] |
| 95 del rules['con_str'] | 108 del rules["con_str"] |
| 96 rules.reset_index(drop=True, inplace=True) | 109 rules.reset_index(drop=True, inplace=True) |
| 97 | 110 |
| 98 # Write association rules and metrics to file | 111 # Write association rules and metrics to file |
| 99 rules.to_csv(outfile, sep="\t", index=False) | 112 rules.to_csv(outfile, sep="\t", index=False) |
| 100 | 113 |
| 101 | 114 |
| 102 if __name__ == '__main__': | 115 if __name__ == "__main__": |
| 103 aparser = argparse.ArgumentParser() | 116 aparser = argparse.ArgumentParser() |
| 104 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | 117 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) |
| 105 aparser.add_argument("-y", "--infile", dest="infile", required=True) | 118 aparser.add_argument("-y", "--infile", dest="infile", required=True) |
| 106 aparser.add_argument("-o", "--outfile", dest="outfile", required=True) | 119 aparser.add_argument("-o", "--outfile", dest="outfile", required=True) |
| 107 aparser.add_argument("-s", "--support", dest="support", default=0.5) | 120 aparser.add_argument("-s", "--support", dest="support", default=0.5) |
| 109 aparser.add_argument("-l", "--lift", dest="lift", default=1.0) | 122 aparser.add_argument("-l", "--lift", dest="lift", default=1.0) |
| 110 aparser.add_argument("-v", "--conviction", dest="conviction", default=1.0) | 123 aparser.add_argument("-v", "--conviction", dest="conviction", default=1.0) |
| 111 aparser.add_argument("-t", "--length", dest="length", default=5) | 124 aparser.add_argument("-t", "--length", dest="length", default=5) |
| 112 args = aparser.parse_args() | 125 args = aparser.parse_args() |
| 113 | 126 |
| 114 main(args.inputs, args.infile, args.outfile, | 127 main( |
| 115 min_support=float(args.support), min_confidence=float(args.confidence), | 128 args.inputs, |
| 116 min_lift=float(args.lift), min_conviction=float(args.conviction), max_length=int(args.length)) | 129 args.infile, |
| 130 args.outfile, | |
| 131 min_support=float(args.support), | |
| 132 min_confidence=float(args.confidence), | |
| 133 min_lift=float(args.lift), | |
| 134 min_conviction=float(args.conviction), | |
| 135 max_length=int(args.length), | |
| 136 ) |
