Mercurial > repos > bgruening > sklearn_svm_classifier
comparison stacking_ensembles.py @ 8:f7f54b24d091 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit c0a3a186966888e5787335a7628bf0a4382637e7
| author | bgruening |
|---|---|
| date | Tue, 14 May 2019 17:35:30 -0400 |
| parents | |
| children | 3469b50cfb9b |
comparison
equal
deleted
inserted
replaced
| 7:979c8148a2b5 | 8:f7f54b24d091 |
|---|---|
| 1 import argparse | |
| 2 import json | |
| 3 import pandas as pd | |
| 4 import pickle | |
| 5 import xgboost | |
| 6 import warnings | |
| 7 from sklearn import (cluster, compose, decomposition, ensemble, | |
| 8 feature_extraction, feature_selection, | |
| 9 gaussian_process, kernel_approximation, metrics, | |
| 10 model_selection, naive_bayes, neighbors, | |
| 11 pipeline, preprocessing, svm, linear_model, | |
| 12 tree, discriminant_analysis) | |
| 13 from sklearn.model_selection._split import check_cv | |
| 14 from feature_selectors import (DyRFE, DyRFECV, | |
| 15 MyPipeline, MyimbPipeline) | |
| 16 from iraps_classifier import (IRAPSCore, IRAPSClassifier, | |
| 17 BinarizeTargetClassifier, | |
| 18 BinarizeTargetRegressor) | |
| 19 from preprocessors import Z_RandomOverSampler | |
| 20 from utils import load_model, get_cv, get_estimator, get_search_params | |
| 21 | |
| 22 from mlxtend.regressor import StackingCVRegressor, StackingRegressor | |
| 23 from mlxtend.classifier import StackingCVClassifier, StackingClassifier | |
| 24 | |
| 25 | |
| 26 warnings.filterwarnings('ignore') | |
| 27 | |
| 28 N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) | |
| 29 | |
| 30 | |
| 31 def main(inputs_path, output_obj, base_paths=None, meta_path=None, | |
| 32 outfile_params=None): | |
| 33 """ | |
| 34 Parameter | |
| 35 --------- | |
| 36 inputs_path : str | |
| 37 File path for Galaxy parameters | |
| 38 | |
| 39 output_obj : str | |
| 40 File path for ensemble estimator ouput | |
| 41 | |
| 42 base_paths : str | |
| 43 File path or paths concatenated by comma. | |
| 44 | |
| 45 meta_path : str | |
| 46 File path | |
| 47 | |
| 48 outfile_params : str | |
| 49 File path for params output | |
| 50 """ | |
| 51 with open(inputs_path, 'r') as param_handler: | |
| 52 params = json.load(param_handler) | |
| 53 | |
| 54 base_estimators = [] | |
| 55 for idx, base_file in enumerate(base_paths.split(',')): | |
| 56 if base_file and base_file != 'None': | |
| 57 with open(base_file, 'rb') as handler: | |
| 58 model = load_model(handler) | |
| 59 else: | |
| 60 estimator_json = (params['base_est_builder'][idx] | |
| 61 ['estimator_selector']) | |
| 62 model = get_estimator(estimator_json) | |
| 63 base_estimators.append(model) | |
| 64 | |
| 65 if meta_path: | |
| 66 with open(meta_path, 'rb') as f: | |
| 67 meta_estimator = load_model(f) | |
| 68 else: | |
| 69 estimator_json = params['meta_estimator']['estimator_selector'] | |
| 70 meta_estimator = get_estimator(estimator_json) | |
| 71 | |
| 72 options = params['algo_selection']['options'] | |
| 73 | |
| 74 cv_selector = options.pop('cv_selector', None) | |
| 75 if cv_selector: | |
| 76 splitter, groups = get_cv(cv_selector) | |
| 77 options['cv'] = splitter | |
| 78 # set n_jobs | |
| 79 options['n_jobs'] = N_JOBS | |
| 80 | |
| 81 if params['algo_selection']['estimator_type'] == 'StackingCVClassifier': | |
| 82 ensemble_estimator = StackingCVClassifier( | |
| 83 classifiers=base_estimators, | |
| 84 meta_classifier=meta_estimator, | |
| 85 **options) | |
| 86 | |
| 87 elif params['algo_selection']['estimator_type'] == 'StackingClassifier': | |
| 88 ensemble_estimator = StackingClassifier( | |
| 89 classifiers=base_estimators, | |
| 90 meta_classifier=meta_estimator, | |
| 91 **options) | |
| 92 | |
| 93 elif params['algo_selection']['estimator_type'] == 'StackingCVRegressor': | |
| 94 ensemble_estimator = StackingCVRegressor( | |
| 95 regressors=base_estimators, | |
| 96 meta_regressor=meta_estimator, | |
| 97 **options) | |
| 98 | |
| 99 else: | |
| 100 ensemble_estimator = StackingRegressor( | |
| 101 regressors=base_estimators, | |
| 102 meta_regressor=meta_estimator, | |
| 103 **options) | |
| 104 | |
| 105 print(ensemble_estimator) | |
| 106 for base_est in base_estimators: | |
| 107 print(base_est) | |
| 108 | |
| 109 with open(output_obj, 'wb') as out_handler: | |
| 110 pickle.dump(ensemble_estimator, out_handler, pickle.HIGHEST_PROTOCOL) | |
| 111 | |
| 112 if params['get_params'] and outfile_params: | |
| 113 results = get_search_params(ensemble_estimator) | |
| 114 df = pd.DataFrame(results, columns=['', 'Parameter', 'Value']) | |
| 115 df.to_csv(outfile_params, sep='\t', index=False) | |
| 116 | |
| 117 | |
| 118 if __name__ == '__main__': | |
| 119 aparser = argparse.ArgumentParser() | |
| 120 aparser.add_argument("-b", "--bases", dest="bases") | |
| 121 aparser.add_argument("-m", "--meta", dest="meta") | |
| 122 aparser.add_argument("-i", "--inputs", dest="inputs") | |
| 123 aparser.add_argument("-o", "--outfile", dest="outfile") | |
| 124 aparser.add_argument("-p", "--outfile_params", dest="outfile_params") | |
| 125 args = aparser.parse_args() | |
| 126 | |
| 127 main(args.inputs, args.outfile, base_paths=args.bases, | |
| 128 meta_path=args.meta, outfile_params=args.outfile_params) |
