Mercurial > repos > bgruening > sklearn_stacking_ensemble_models
comparison search_model_validation.py @ 9:b8c92e94ac1d draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit e2a5eade6d0e5ddf3a47630381a0ad90d80e8a04"
| author | bgruening | 
|---|---|
| date | Tue, 13 Apr 2021 15:49:42 +0000 | 
| parents | 00819b7f2f55 | 
| children | 2d890789ac48 | 
   comparison
  equal
  deleted
  inserted
  replaced
| 8:6430b9b00d2f | 9:b8c92e94ac1d | 
|---|---|
| 9 import pickle | 9 import pickle | 
| 10 import skrebate | 10 import skrebate | 
| 11 import sys | 11 import sys | 
| 12 import warnings | 12 import warnings | 
| 13 from scipy.io import mmread | 13 from scipy.io import mmread | 
| 14 from sklearn import (cluster, decomposition, feature_selection, | 14 from sklearn import ( | 
| 15 kernel_approximation, model_selection, preprocessing) | 15 cluster, | 
| 16 decomposition, | |
| 17 feature_selection, | |
| 18 kernel_approximation, | |
| 19 model_selection, | |
| 20 preprocessing, | |
| 21 ) | |
| 16 from sklearn.exceptions import FitFailedWarning | 22 from sklearn.exceptions import FitFailedWarning | 
| 17 from sklearn.model_selection._validation import _score, cross_validate | 23 from sklearn.model_selection._validation import _score, cross_validate | 
| 18 from sklearn.model_selection import _search, _validation | 24 from sklearn.model_selection import _search, _validation | 
| 19 from sklearn.pipeline import Pipeline | 25 from sklearn.pipeline import Pipeline | 
| 20 | 26 | 
| 21 from galaxy_ml.utils import (SafeEval, get_cv, get_scoring, load_model, | 27 from galaxy_ml.utils import ( | 
| 22 read_columns, try_get_attr, get_module, | 28 SafeEval, | 
| 23 clean_params, get_main_estimator) | 29 get_cv, | 
| 24 | 30 get_scoring, | 
| 25 | 31 load_model, | 
| 26 _fit_and_score = try_get_attr('galaxy_ml.model_validations', '_fit_and_score') | 32 read_columns, | 
| 27 setattr(_search, '_fit_and_score', _fit_and_score) | 33 try_get_attr, | 
| 28 setattr(_validation, '_fit_and_score', _fit_and_score) | 34 get_module, | 
| 29 | 35 clean_params, | 
| 30 N_JOBS = int(os.environ.get('GALAXY_SLOTS', 1)) | 36 get_main_estimator, | 
| 37 ) | |
| 38 | |
| 39 | |
| 40 _fit_and_score = try_get_attr("galaxy_ml.model_validations", "_fit_and_score") | |
| 41 setattr(_search, "_fit_and_score", _fit_and_score) | |
| 42 setattr(_validation, "_fit_and_score", _fit_and_score) | |
| 43 | |
| 44 N_JOBS = int(os.environ.get("GALAXY_SLOTS", 1)) | |
| 31 # handle disk cache | 45 # handle disk cache | 
| 32 CACHE_DIR = os.path.join(os.getcwd(), 'cached') | 46 CACHE_DIR = os.path.join(os.getcwd(), "cached") | 
| 33 del os | 47 del os | 
| 34 NON_SEARCHABLE = ('n_jobs', 'pre_dispatch', 'memory', '_path', | 48 NON_SEARCHABLE = ("n_jobs", "pre_dispatch", "memory", "_path", "nthread", "callbacks") | 
| 35 'nthread', 'callbacks') | |
| 36 | 49 | 
| 37 | 50 | 
| 38 def _eval_search_params(params_builder): | 51 def _eval_search_params(params_builder): | 
| 39 search_params = {} | 52 search_params = {} | 
| 40 | 53 | 
| 41 for p in params_builder['param_set']: | 54 for p in params_builder["param_set"]: | 
| 42 search_list = p['sp_list'].strip() | 55 search_list = p["sp_list"].strip() | 
| 43 if search_list == '': | 56 if search_list == "": | 
| 44 continue | 57 continue | 
| 45 | 58 | 
| 46 param_name = p['sp_name'] | 59 param_name = p["sp_name"] | 
| 47 if param_name.lower().endswith(NON_SEARCHABLE): | 60 if param_name.lower().endswith(NON_SEARCHABLE): | 
| 48 print("Warning: `%s` is not eligible for search and was " | 61 print("Warning: `%s` is not eligible for search and was " "omitted!" % param_name) | 
| 49 "omitted!" % param_name) | |
| 50 continue | 62 continue | 
| 51 | 63 | 
| 52 if not search_list.startswith(':'): | 64 if not search_list.startswith(":"): | 
| 53 safe_eval = SafeEval(load_scipy=True, load_numpy=True) | 65 safe_eval = SafeEval(load_scipy=True, load_numpy=True) | 
| 54 ev = safe_eval(search_list) | 66 ev = safe_eval(search_list) | 
| 55 search_params[param_name] = ev | 67 search_params[param_name] = ev | 
| 56 else: | 68 else: | 
| 57 # Have `:` before search list, asks for estimator evaluatio | 69 # Have `:` before search list, asks for estimator evaluatio | 
| 58 safe_eval_es = SafeEval(load_estimators=True) | 70 safe_eval_es = SafeEval(load_estimators=True) | 
| 59 search_list = search_list[1:].strip() | 71 search_list = search_list[1:].strip() | 
| 60 # TODO maybe add regular express check | 72 # TODO maybe add regular express check | 
| 61 ev = safe_eval_es(search_list) | 73 ev = safe_eval_es(search_list) | 
| 62 preprocessings = ( | 74 preprocessings = ( | 
| 63 preprocessing.StandardScaler(), preprocessing.Binarizer(), | 75 preprocessing.StandardScaler(), | 
| 76 preprocessing.Binarizer(), | |
| 64 preprocessing.MaxAbsScaler(), | 77 preprocessing.MaxAbsScaler(), | 
| 65 preprocessing.Normalizer(), preprocessing.MinMaxScaler(), | 78 preprocessing.Normalizer(), | 
| 79 preprocessing.MinMaxScaler(), | |
| 66 preprocessing.PolynomialFeatures(), | 80 preprocessing.PolynomialFeatures(), | 
| 67 preprocessing.RobustScaler(), feature_selection.SelectKBest(), | 81 preprocessing.RobustScaler(), | 
| 82 feature_selection.SelectKBest(), | |
| 68 feature_selection.GenericUnivariateSelect(), | 83 feature_selection.GenericUnivariateSelect(), | 
| 69 feature_selection.SelectPercentile(), | 84 feature_selection.SelectPercentile(), | 
| 70 feature_selection.SelectFpr(), feature_selection.SelectFdr(), | 85 feature_selection.SelectFpr(), | 
| 86 feature_selection.SelectFdr(), | |
| 71 feature_selection.SelectFwe(), | 87 feature_selection.SelectFwe(), | 
| 72 feature_selection.VarianceThreshold(), | 88 feature_selection.VarianceThreshold(), | 
| 73 decomposition.FactorAnalysis(random_state=0), | 89 decomposition.FactorAnalysis(random_state=0), | 
| 74 decomposition.FastICA(random_state=0), | 90 decomposition.FastICA(random_state=0), | 
| 75 decomposition.IncrementalPCA(), | 91 decomposition.IncrementalPCA(), | 
| 76 decomposition.KernelPCA(random_state=0, n_jobs=N_JOBS), | 92 decomposition.KernelPCA(random_state=0, n_jobs=N_JOBS), | 
| 77 decomposition.LatentDirichletAllocation( | 93 decomposition.LatentDirichletAllocation(random_state=0, n_jobs=N_JOBS), | 
| 78 random_state=0, n_jobs=N_JOBS), | 94 decomposition.MiniBatchDictionaryLearning(random_state=0, n_jobs=N_JOBS), | 
| 79 decomposition.MiniBatchDictionaryLearning( | 95 decomposition.MiniBatchSparsePCA(random_state=0, n_jobs=N_JOBS), | 
| 80 random_state=0, n_jobs=N_JOBS), | |
| 81 decomposition.MiniBatchSparsePCA( | |
| 82 random_state=0, n_jobs=N_JOBS), | |
| 83 decomposition.NMF(random_state=0), | 96 decomposition.NMF(random_state=0), | 
| 84 decomposition.PCA(random_state=0), | 97 decomposition.PCA(random_state=0), | 
| 85 decomposition.SparsePCA(random_state=0, n_jobs=N_JOBS), | 98 decomposition.SparsePCA(random_state=0, n_jobs=N_JOBS), | 
| 86 decomposition.TruncatedSVD(random_state=0), | 99 decomposition.TruncatedSVD(random_state=0), | 
| 87 kernel_approximation.Nystroem(random_state=0), | 100 kernel_approximation.Nystroem(random_state=0), | 
| 92 skrebate.ReliefF(n_jobs=N_JOBS), | 105 skrebate.ReliefF(n_jobs=N_JOBS), | 
| 93 skrebate.SURF(n_jobs=N_JOBS), | 106 skrebate.SURF(n_jobs=N_JOBS), | 
| 94 skrebate.SURFstar(n_jobs=N_JOBS), | 107 skrebate.SURFstar(n_jobs=N_JOBS), | 
| 95 skrebate.MultiSURF(n_jobs=N_JOBS), | 108 skrebate.MultiSURF(n_jobs=N_JOBS), | 
| 96 skrebate.MultiSURFstar(n_jobs=N_JOBS), | 109 skrebate.MultiSURFstar(n_jobs=N_JOBS), | 
| 97 imblearn.under_sampling.ClusterCentroids( | 110 imblearn.under_sampling.ClusterCentroids(random_state=0, n_jobs=N_JOBS), | 
| 98 random_state=0, n_jobs=N_JOBS), | 111 imblearn.under_sampling.CondensedNearestNeighbour(random_state=0, n_jobs=N_JOBS), | 
| 99 imblearn.under_sampling.CondensedNearestNeighbour( | 112 imblearn.under_sampling.EditedNearestNeighbours(random_state=0, n_jobs=N_JOBS), | 
| 100 random_state=0, n_jobs=N_JOBS), | 113 imblearn.under_sampling.RepeatedEditedNearestNeighbours(random_state=0, n_jobs=N_JOBS), | 
| 101 imblearn.under_sampling.EditedNearestNeighbours( | |
| 102 random_state=0, n_jobs=N_JOBS), | |
| 103 imblearn.under_sampling.RepeatedEditedNearestNeighbours( | |
| 104 random_state=0, n_jobs=N_JOBS), | |
| 105 imblearn.under_sampling.AllKNN(random_state=0, n_jobs=N_JOBS), | 114 imblearn.under_sampling.AllKNN(random_state=0, n_jobs=N_JOBS), | 
| 106 imblearn.under_sampling.InstanceHardnessThreshold( | 115 imblearn.under_sampling.InstanceHardnessThreshold(random_state=0, n_jobs=N_JOBS), | 
| 107 random_state=0, n_jobs=N_JOBS), | 116 imblearn.under_sampling.NearMiss(random_state=0, n_jobs=N_JOBS), | 
| 108 imblearn.under_sampling.NearMiss( | 117 imblearn.under_sampling.NeighbourhoodCleaningRule(random_state=0, n_jobs=N_JOBS), | 
| 109 random_state=0, n_jobs=N_JOBS), | 118 imblearn.under_sampling.OneSidedSelection(random_state=0, n_jobs=N_JOBS), | 
| 110 imblearn.under_sampling.NeighbourhoodCleaningRule( | 119 imblearn.under_sampling.RandomUnderSampler(random_state=0), | 
| 111 random_state=0, n_jobs=N_JOBS), | 120 imblearn.under_sampling.TomekLinks(random_state=0, n_jobs=N_JOBS), | 
| 112 imblearn.under_sampling.OneSidedSelection( | |
| 113 random_state=0, n_jobs=N_JOBS), | |
| 114 imblearn.under_sampling.RandomUnderSampler( | |
| 115 random_state=0), | |
| 116 imblearn.under_sampling.TomekLinks( | |
| 117 random_state=0, n_jobs=N_JOBS), | |
| 118 imblearn.over_sampling.ADASYN(random_state=0, n_jobs=N_JOBS), | 121 imblearn.over_sampling.ADASYN(random_state=0, n_jobs=N_JOBS), | 
| 119 imblearn.over_sampling.RandomOverSampler(random_state=0), | 122 imblearn.over_sampling.RandomOverSampler(random_state=0), | 
| 120 imblearn.over_sampling.SMOTE(random_state=0, n_jobs=N_JOBS), | 123 imblearn.over_sampling.SMOTE(random_state=0, n_jobs=N_JOBS), | 
| 121 imblearn.over_sampling.SVMSMOTE(random_state=0, n_jobs=N_JOBS), | 124 imblearn.over_sampling.SVMSMOTE(random_state=0, n_jobs=N_JOBS), | 
| 122 imblearn.over_sampling.BorderlineSMOTE( | 125 imblearn.over_sampling.BorderlineSMOTE(random_state=0, n_jobs=N_JOBS), | 
| 123 random_state=0, n_jobs=N_JOBS), | 126 imblearn.over_sampling.SMOTENC(categorical_features=[], random_state=0, n_jobs=N_JOBS), | 
| 124 imblearn.over_sampling.SMOTENC( | |
| 125 categorical_features=[], random_state=0, n_jobs=N_JOBS), | |
| 126 imblearn.combine.SMOTEENN(random_state=0), | 127 imblearn.combine.SMOTEENN(random_state=0), | 
| 127 imblearn.combine.SMOTETomek(random_state=0)) | 128 imblearn.combine.SMOTETomek(random_state=0), | 
| 129 ) | |
| 128 newlist = [] | 130 newlist = [] | 
| 129 for obj in ev: | 131 for obj in ev: | 
| 130 if obj is None: | 132 if obj is None: | 
| 131 newlist.append(None) | 133 newlist.append(None) | 
| 132 elif obj == 'all_0': | 134 elif obj == "all_0": | 
| 133 newlist.extend(preprocessings[0:35]) | 135 newlist.extend(preprocessings[0:35]) | 
| 134 elif obj == 'sk_prep_all': # no KernalCenter() | 136 elif obj == "sk_prep_all": # no KernalCenter() | 
| 135 newlist.extend(preprocessings[0:7]) | 137 newlist.extend(preprocessings[0:7]) | 
| 136 elif obj == 'fs_all': | 138 elif obj == "fs_all": | 
| 137 newlist.extend(preprocessings[7:14]) | 139 newlist.extend(preprocessings[7:14]) | 
| 138 elif obj == 'decomp_all': | 140 elif obj == "decomp_all": | 
| 139 newlist.extend(preprocessings[14:25]) | 141 newlist.extend(preprocessings[14:25]) | 
| 140 elif obj == 'k_appr_all': | 142 elif obj == "k_appr_all": | 
| 141 newlist.extend(preprocessings[25:29]) | 143 newlist.extend(preprocessings[25:29]) | 
| 142 elif obj == 'reb_all': | 144 elif obj == "reb_all": | 
| 143 newlist.extend(preprocessings[30:35]) | 145 newlist.extend(preprocessings[30:35]) | 
| 144 elif obj == 'imb_all': | 146 elif obj == "imb_all": | 
| 145 newlist.extend(preprocessings[35:54]) | 147 newlist.extend(preprocessings[35:54]) | 
| 146 elif type(obj) is int and -1 < obj < len(preprocessings): | 148 elif type(obj) is int and -1 < obj < len(preprocessings): | 
| 147 newlist.append(preprocessings[obj]) | 149 newlist.append(preprocessings[obj]) | 
| 148 elif hasattr(obj, 'get_params'): # user uploaded object | 150 elif hasattr(obj, "get_params"): # user uploaded object | 
| 149 if 'n_jobs' in obj.get_params(): | 151 if "n_jobs" in obj.get_params(): | 
| 150 newlist.append(obj.set_params(n_jobs=N_JOBS)) | 152 newlist.append(obj.set_params(n_jobs=N_JOBS)) | 
| 151 else: | 153 else: | 
| 152 newlist.append(obj) | 154 newlist.append(obj) | 
| 153 else: | 155 else: | 
| 154 sys.exit("Unsupported estimator type: %r" % (obj)) | 156 sys.exit("Unsupported estimator type: %r" % (obj)) | 
| 156 search_params[param_name] = newlist | 158 search_params[param_name] = newlist | 
| 157 | 159 | 
| 158 return search_params | 160 return search_params | 
| 159 | 161 | 
| 160 | 162 | 
| 161 def _handle_X_y(estimator, params, infile1, infile2, loaded_df={}, | 163 def _handle_X_y( | 
| 162 ref_seq=None, intervals=None, targets=None, | 164 estimator, | 
| 163 fasta_path=None): | 165 params, | 
| 166 infile1, | |
| 167 infile2, | |
| 168 loaded_df={}, | |
| 169 ref_seq=None, | |
| 170 intervals=None, | |
| 171 targets=None, | |
| 172 fasta_path=None, | |
| 173 ): | |
| 164 """read inputs | 174 """read inputs | 
| 165 | 175 | 
| 166 Params | 176 Params | 
| 167 ------- | 177 ------- | 
| 168 estimator : estimator object | 178 estimator : estimator object | 
| 190 X : numpy array | 200 X : numpy array | 
| 191 y : numpy array | 201 y : numpy array | 
| 192 """ | 202 """ | 
| 193 estimator_params = estimator.get_params() | 203 estimator_params = estimator.get_params() | 
| 194 | 204 | 
| 195 input_type = params['input_options']['selected_input'] | 205 input_type = params["input_options"]["selected_input"] | 
| 196 # tabular input | 206 # tabular input | 
| 197 if input_type == 'tabular': | 207 if input_type == "tabular": | 
| 198 header = 'infer' if params['input_options']['header1'] else None | 208 header = "infer" if params["input_options"]["header1"] else None | 
| 199 column_option = (params['input_options']['column_selector_options_1'] | 209 column_option = params["input_options"]["column_selector_options_1"]["selected_column_selector_option"] | 
| 200 ['selected_column_selector_option']) | 210 if column_option in [ | 
| 201 if column_option in ['by_index_number', 'all_but_by_index_number', | 211 "by_index_number", | 
| 202 'by_header_name', 'all_but_by_header_name']: | 212 "all_but_by_index_number", | 
| 203 c = params['input_options']['column_selector_options_1']['col1'] | 213 "by_header_name", | 
| 214 "all_but_by_header_name", | |
| 215 ]: | |
| 216 c = params["input_options"]["column_selector_options_1"]["col1"] | |
| 204 else: | 217 else: | 
| 205 c = None | 218 c = None | 
| 206 | 219 | 
| 207 df_key = infile1 + repr(header) | 220 df_key = infile1 + repr(header) | 
| 208 | 221 | 
| 209 if df_key in loaded_df: | 222 if df_key in loaded_df: | 
| 210 infile1 = loaded_df[df_key] | 223 infile1 = loaded_df[df_key] | 
| 211 | 224 | 
| 212 df = pd.read_csv(infile1, sep='\t', header=header, | 225 df = pd.read_csv(infile1, sep="\t", header=header, parse_dates=True) | 
| 213 parse_dates=True) | |
| 214 loaded_df[df_key] = df | 226 loaded_df[df_key] = df | 
| 215 | 227 | 
| 216 X = read_columns(df, c=c, c_option=column_option).astype(float) | 228 X = read_columns(df, c=c, c_option=column_option).astype(float) | 
| 217 # sparse input | 229 # sparse input | 
| 218 elif input_type == 'sparse': | 230 elif input_type == "sparse": | 
| 219 X = mmread(open(infile1, 'r')) | 231 X = mmread(open(infile1, "r")) | 
| 220 | 232 | 
| 221 # fasta_file input | 233 # fasta_file input | 
| 222 elif input_type == 'seq_fasta': | 234 elif input_type == "seq_fasta": | 
| 223 pyfaidx = get_module('pyfaidx') | 235 pyfaidx = get_module("pyfaidx") | 
| 224 sequences = pyfaidx.Fasta(fasta_path) | 236 sequences = pyfaidx.Fasta(fasta_path) | 
| 225 n_seqs = len(sequences.keys()) | 237 n_seqs = len(sequences.keys()) | 
| 226 X = np.arange(n_seqs)[:, np.newaxis] | 238 X = np.arange(n_seqs)[:, np.newaxis] | 
| 227 for param in estimator_params.keys(): | 239 for param in estimator_params.keys(): | 
| 228 if param.endswith('fasta_path'): | 240 if param.endswith("fasta_path"): | 
| 229 estimator.set_params( | 241 estimator.set_params(**{param: fasta_path}) | 
| 230 **{param: fasta_path}) | |
| 231 break | 242 break | 
| 232 else: | 243 else: | 
| 233 raise ValueError( | 244 raise ValueError( | 
| 234 "The selected estimator doesn't support " | 245 "The selected estimator doesn't support " | 
| 235 "fasta file input! Please consider using " | 246 "fasta file input! Please consider using " | 
| 236 "KerasGBatchClassifier with " | 247 "KerasGBatchClassifier with " | 
| 237 "FastaDNABatchGenerator/FastaProteinBatchGenerator " | 248 "FastaDNABatchGenerator/FastaProteinBatchGenerator " | 
| 238 "or having GenomeOneHotEncoder/ProteinOneHotEncoder " | 249 "or having GenomeOneHotEncoder/ProteinOneHotEncoder " | 
| 239 "in pipeline!") | 250 "in pipeline!" | 
| 240 | 251 ) | 
| 241 elif input_type == 'refseq_and_interval': | 252 | 
| 253 elif input_type == "refseq_and_interval": | |
| 242 path_params = { | 254 path_params = { | 
| 243 'data_batch_generator__ref_genome_path': ref_seq, | 255 "data_batch_generator__ref_genome_path": ref_seq, | 
| 244 'data_batch_generator__intervals_path': intervals, | 256 "data_batch_generator__intervals_path": intervals, | 
| 245 'data_batch_generator__target_path': targets | 257 "data_batch_generator__target_path": targets, | 
| 246 } | 258 } | 
| 247 estimator.set_params(**path_params) | 259 estimator.set_params(**path_params) | 
| 248 n_intervals = sum(1 for line in open(intervals)) | 260 n_intervals = sum(1 for line in open(intervals)) | 
| 249 X = np.arange(n_intervals)[:, np.newaxis] | 261 X = np.arange(n_intervals)[:, np.newaxis] | 
| 250 | 262 | 
| 251 # Get target y | 263 # Get target y | 
| 252 header = 'infer' if params['input_options']['header2'] else None | 264 header = "infer" if params["input_options"]["header2"] else None | 
| 253 column_option = (params['input_options']['column_selector_options_2'] | 265 column_option = params["input_options"]["column_selector_options_2"]["selected_column_selector_option2"] | 
| 254 ['selected_column_selector_option2']) | 266 if column_option in [ | 
| 255 if column_option in ['by_index_number', 'all_but_by_index_number', | 267 "by_index_number", | 
| 256 'by_header_name', 'all_but_by_header_name']: | 268 "all_but_by_index_number", | 
| 257 c = params['input_options']['column_selector_options_2']['col2'] | 269 "by_header_name", | 
| 270 "all_but_by_header_name", | |
| 271 ]: | |
| 272 c = params["input_options"]["column_selector_options_2"]["col2"] | |
| 258 else: | 273 else: | 
| 259 c = None | 274 c = None | 
| 260 | 275 | 
| 261 df_key = infile2 + repr(header) | 276 df_key = infile2 + repr(header) | 
| 262 if df_key in loaded_df: | 277 if df_key in loaded_df: | 
| 263 infile2 = loaded_df[df_key] | 278 infile2 = loaded_df[df_key] | 
| 264 else: | 279 else: | 
| 265 infile2 = pd.read_csv(infile2, sep='\t', | 280 infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) | 
| 266 header=header, parse_dates=True) | |
| 267 loaded_df[df_key] = infile2 | 281 loaded_df[df_key] = infile2 | 
| 268 | 282 | 
| 269 y = read_columns( | 283 y = read_columns(infile2, c=c, c_option=column_option, sep="\t", header=header, parse_dates=True) | 
| 270 infile2, | |
| 271 c=c, | |
| 272 c_option=column_option, | |
| 273 sep='\t', | |
| 274 header=header, | |
| 275 parse_dates=True) | |
| 276 if len(y.shape) == 2 and y.shape[1] == 1: | 284 if len(y.shape) == 2 and y.shape[1] == 1: | 
| 277 y = y.ravel() | 285 y = y.ravel() | 
| 278 if input_type == 'refseq_and_interval': | 286 if input_type == "refseq_and_interval": | 
| 279 estimator.set_params( | 287 estimator.set_params(data_batch_generator__features=y.ravel().tolist()) | 
| 280 data_batch_generator__features=y.ravel().tolist()) | |
| 281 y = None | 288 y = None | 
| 282 # end y | 289 # end y | 
| 283 | 290 | 
| 284 return estimator, X, y | 291 return estimator, X, y | 
| 285 | 292 | 
| 286 | 293 | 
| 287 def _do_outer_cv(searcher, X, y, outer_cv, scoring, error_score='raise', | 294 def _do_outer_cv(searcher, X, y, outer_cv, scoring, error_score="raise", outfile=None): | 
| 288 outfile=None): | |
| 289 """Do outer cross-validation for nested CV | 295 """Do outer cross-validation for nested CV | 
| 290 | 296 | 
| 291 Parameters | 297 Parameters | 
| 292 ---------- | 298 ---------- | 
| 293 searcher : object | 299 searcher : object | 
| 303 error_score: str, float or numpy float | 309 error_score: str, float or numpy float | 
| 304 Whether to raise fit error or return an value | 310 Whether to raise fit error or return an value | 
| 305 outfile : str | 311 outfile : str | 
| 306 File path to store the restuls | 312 File path to store the restuls | 
| 307 """ | 313 """ | 
| 308 if error_score == 'raise': | 314 if error_score == "raise": | 
| 309 rval = cross_validate( | 315 rval = cross_validate( | 
| 310 searcher, X, y, scoring=scoring, | 316 searcher, | 
| 311 cv=outer_cv, n_jobs=N_JOBS, verbose=0, | 317 X, | 
| 312 error_score=error_score) | 318 y, | 
| 313 else: | 319 scoring=scoring, | 
| 314 warnings.simplefilter('always', FitFailedWarning) | 320 cv=outer_cv, | 
| 321 n_jobs=N_JOBS, | |
| 322 verbose=0, | |
| 323 error_score=error_score, | |
| 324 ) | |
| 325 else: | |
| 326 warnings.simplefilter("always", FitFailedWarning) | |
| 315 with warnings.catch_warnings(record=True) as w: | 327 with warnings.catch_warnings(record=True) as w: | 
| 316 try: | 328 try: | 
| 317 rval = cross_validate( | 329 rval = cross_validate( | 
| 318 searcher, X, y, | 330 searcher, | 
| 331 X, | |
| 332 y, | |
| 319 scoring=scoring, | 333 scoring=scoring, | 
| 320 cv=outer_cv, n_jobs=N_JOBS, | 334 cv=outer_cv, | 
| 335 n_jobs=N_JOBS, | |
| 321 verbose=0, | 336 verbose=0, | 
| 322 error_score=error_score) | 337 error_score=error_score, | 
| 338 ) | |
| 323 except ValueError: | 339 except ValueError: | 
| 324 pass | 340 pass | 
| 325 for warning in w: | 341 for warning in w: | 
| 326 print(repr(warning.message)) | 342 print(repr(warning.message)) | 
| 327 | 343 | 
| 328 keys = list(rval.keys()) | 344 keys = list(rval.keys()) | 
| 329 for k in keys: | 345 for k in keys: | 
| 330 if k.startswith('test'): | 346 if k.startswith("test"): | 
| 331 rval['mean_' + k] = np.mean(rval[k]) | 347 rval["mean_" + k] = np.mean(rval[k]) | 
| 332 rval['std_' + k] = np.std(rval[k]) | 348 rval["std_" + k] = np.std(rval[k]) | 
| 333 if k.endswith('time'): | 349 if k.endswith("time"): | 
| 334 rval.pop(k) | 350 rval.pop(k) | 
| 335 rval = pd.DataFrame(rval) | 351 rval = pd.DataFrame(rval) | 
| 336 rval = rval[sorted(rval.columns)] | 352 rval = rval[sorted(rval.columns)] | 
| 337 rval.to_csv(path_or_buf=outfile, sep='\t', header=True, index=False) | 353 rval.to_csv(path_or_buf=outfile, sep="\t", header=True, index=False) | 
| 338 | 354 | 
| 339 | 355 | 
| 340 def _do_train_test_split_val(searcher, X, y, params, error_score='raise', | 356 def _do_train_test_split_val( | 
| 341 primary_scoring=None, groups=None, | 357 searcher, | 
| 342 outfile=None): | 358 X, | 
| 343 """ do train test split, searchCV validates on the train and then use | 359 y, | 
| 360 params, | |
| 361 error_score="raise", | |
| 362 primary_scoring=None, | |
| 363 groups=None, | |
| 364 outfile=None, | |
| 365 ): | |
| 366 """do train test split, searchCV validates on the train and then use | |
| 344 the best_estimator_ to evaluate on the test | 367 the best_estimator_ to evaluate on the test | 
| 345 | 368 | 
| 346 Returns | 369 Returns | 
| 347 -------- | 370 -------- | 
| 348 Fitted SearchCV object | 371 Fitted SearchCV object | 
| 349 """ | 372 """ | 
| 350 train_test_split = try_get_attr( | 373 train_test_split = try_get_attr("galaxy_ml.model_validations", "train_test_split") | 
| 351 'galaxy_ml.model_validations', 'train_test_split') | 374 split_options = params["outer_split"] | 
| 352 split_options = params['outer_split'] | |
| 353 | 375 | 
| 354 # splits | 376 # splits | 
| 355 if split_options['shuffle'] == 'stratified': | 377 if split_options["shuffle"] == "stratified": | 
| 356 split_options['labels'] = y | 378 split_options["labels"] = y | 
| 357 X, X_test, y, y_test = train_test_split(X, y, **split_options) | 379 X, X_test, y, y_test = train_test_split(X, y, **split_options) | 
| 358 elif split_options['shuffle'] == 'group': | 380 elif split_options["shuffle"] == "group": | 
| 359 if groups is None: | 381 if groups is None: | 
| 360 raise ValueError("No group based CV option was choosen for " | 382 raise ValueError("No group based CV option was choosen for " "group shuffle!") | 
| 361 "group shuffle!") | 383 split_options["labels"] = groups | 
| 362 split_options['labels'] = groups | |
| 363 if y is None: | 384 if y is None: | 
| 364 X, X_test, groups, _ =\ | 385 X, X_test, groups, _ = train_test_split(X, groups, **split_options) | 
| 365 train_test_split(X, groups, **split_options) | |
| 366 else: | 386 else: | 
| 367 X, X_test, y, y_test, groups, _ =\ | 387 X, X_test, y, y_test, groups, _ = train_test_split(X, y, groups, **split_options) | 
| 368 train_test_split(X, y, groups, **split_options) | 388 else: | 
| 369 else: | 389 if split_options["shuffle"] == "None": | 
| 370 if split_options['shuffle'] == 'None': | 390 split_options["shuffle"] = None | 
| 371 split_options['shuffle'] = None | 391 X, X_test, y, y_test = train_test_split(X, y, **split_options) | 
| 372 X, X_test, y, y_test =\ | 392 | 
| 373 train_test_split(X, y, **split_options) | 393 if error_score == "raise": | 
| 374 | |
| 375 if error_score == 'raise': | |
| 376 searcher.fit(X, y, groups=groups) | 394 searcher.fit(X, y, groups=groups) | 
| 377 else: | 395 else: | 
| 378 warnings.simplefilter('always', FitFailedWarning) | 396 warnings.simplefilter("always", FitFailedWarning) | 
| 379 with warnings.catch_warnings(record=True) as w: | 397 with warnings.catch_warnings(record=True) as w: | 
| 380 try: | 398 try: | 
| 381 searcher.fit(X, y, groups=groups) | 399 searcher.fit(X, y, groups=groups) | 
| 382 except ValueError: | 400 except ValueError: | 
| 383 pass | 401 pass | 
| 388 if isinstance(scorer_, collections.Mapping): | 406 if isinstance(scorer_, collections.Mapping): | 
| 389 is_multimetric = True | 407 is_multimetric = True | 
| 390 else: | 408 else: | 
| 391 is_multimetric = False | 409 is_multimetric = False | 
| 392 | 410 | 
| 393 best_estimator_ = getattr(searcher, 'best_estimator_') | 411 best_estimator_ = getattr(searcher, "best_estimator_") | 
| 394 | 412 | 
| 395 # TODO Solve deep learning models in pipeline | 413 # TODO Solve deep learning models in pipeline | 
| 396 if best_estimator_.__class__.__name__ == 'KerasGBatchClassifier': | 414 if best_estimator_.__class__.__name__ == "KerasGBatchClassifier": | 
| 397 test_score = best_estimator_.evaluate( | 415 test_score = best_estimator_.evaluate(X_test, scorer=scorer_, is_multimetric=is_multimetric) | 
| 398 X_test, scorer=scorer_, is_multimetric=is_multimetric) | 416 else: | 
| 399 else: | 417 test_score = _score(best_estimator_, X_test, y_test, scorer_, is_multimetric=is_multimetric) | 
| 400 test_score = _score(best_estimator_, X_test, | |
| 401 y_test, scorer_, | |
| 402 is_multimetric=is_multimetric) | |
| 403 | 418 | 
| 404 if not is_multimetric: | 419 if not is_multimetric: | 
| 405 test_score = {primary_scoring: test_score} | 420 test_score = {primary_scoring: test_score} | 
| 406 for key, value in test_score.items(): | 421 for key, value in test_score.items(): | 
| 407 test_score[key] = [value] | 422 test_score[key] = [value] | 
| 408 result_df = pd.DataFrame(test_score) | 423 result_df = pd.DataFrame(test_score) | 
| 409 result_df.to_csv(path_or_buf=outfile, sep='\t', header=True, | 424 result_df.to_csv(path_or_buf=outfile, sep="\t", header=True, index=False) | 
| 410 index=False) | |
| 411 | 425 | 
| 412 return searcher | 426 return searcher | 
| 413 | 427 | 
| 414 | 428 | 
| 415 def main(inputs, infile_estimator, infile1, infile2, | 429 def main( | 
| 416 outfile_result, outfile_object=None, | 430 inputs, | 
| 417 outfile_weights=None, groups=None, | 431 infile_estimator, | 
| 418 ref_seq=None, intervals=None, targets=None, | 432 infile1, | 
| 419 fasta_path=None): | 433 infile2, | 
| 434 outfile_result, | |
| 435 outfile_object=None, | |
| 436 outfile_weights=None, | |
| 437 groups=None, | |
| 438 ref_seq=None, | |
| 439 intervals=None, | |
| 440 targets=None, | |
| 441 fasta_path=None, | |
| 442 ): | |
| 420 """ | 443 """ | 
| 421 Parameter | 444 Parameter | 
| 422 --------- | 445 --------- | 
| 423 inputs : str | 446 inputs : str | 
| 424 File path to galaxy tool parameter | 447 File path to galaxy tool parameter | 
| 454 File path to dataset compressed target bed file | 477 File path to dataset compressed target bed file | 
| 455 | 478 | 
| 456 fasta_path : str | 479 fasta_path : str | 
| 457 File path to dataset containing fasta file | 480 File path to dataset containing fasta file | 
| 458 """ | 481 """ | 
| 459 warnings.simplefilter('ignore') | 482 warnings.simplefilter("ignore") | 
| 460 | 483 | 
| 461 # store read dataframe object | 484 # store read dataframe object | 
| 462 loaded_df = {} | 485 loaded_df = {} | 
| 463 | 486 | 
| 464 with open(inputs, 'r') as param_handler: | 487 with open(inputs, "r") as param_handler: | 
| 465 params = json.load(param_handler) | 488 params = json.load(param_handler) | 
| 466 | 489 | 
| 467 # Override the refit parameter | 490 # Override the refit parameter | 
| 468 params['search_schemes']['options']['refit'] = True \ | 491 params["search_schemes"]["options"]["refit"] = True if params["save"] != "nope" else False | 
| 469 if params['save'] != 'nope' else False | 492 | 
| 470 | 493 with open(infile_estimator, "rb") as estimator_handler: | 
| 471 with open(infile_estimator, 'rb') as estimator_handler: | |
| 472 estimator = load_model(estimator_handler) | 494 estimator = load_model(estimator_handler) | 
| 473 | 495 | 
| 474 optimizer = params['search_schemes']['selected_search_scheme'] | 496 optimizer = params["search_schemes"]["selected_search_scheme"] | 
| 475 optimizer = getattr(model_selection, optimizer) | 497 optimizer = getattr(model_selection, optimizer) | 
| 476 | 498 | 
| 477 # handle gridsearchcv options | 499 # handle gridsearchcv options | 
| 478 options = params['search_schemes']['options'] | 500 options = params["search_schemes"]["options"] | 
| 479 | 501 | 
| 480 if groups: | 502 if groups: | 
| 481 header = 'infer' if (options['cv_selector']['groups_selector'] | 503 header = "infer" if (options["cv_selector"]["groups_selector"]["header_g"]) else None | 
| 482 ['header_g']) else None | 504 column_option = options["cv_selector"]["groups_selector"]["column_selector_options_g"][ | 
| 483 column_option = (options['cv_selector']['groups_selector'] | 505 "selected_column_selector_option_g" | 
| 484 ['column_selector_options_g'] | 506 ] | 
| 485 ['selected_column_selector_option_g']) | 507 if column_option in [ | 
| 486 if column_option in ['by_index_number', 'all_but_by_index_number', | 508 "by_index_number", | 
| 487 'by_header_name', 'all_but_by_header_name']: | 509 "all_but_by_index_number", | 
| 488 c = (options['cv_selector']['groups_selector'] | 510 "by_header_name", | 
| 489 ['column_selector_options_g']['col_g']) | 511 "all_but_by_header_name", | 
| 512 ]: | |
| 513 c = options["cv_selector"]["groups_selector"]["column_selector_options_g"]["col_g"] | |
| 490 else: | 514 else: | 
| 491 c = None | 515 c = None | 
| 492 | 516 | 
| 493 df_key = groups + repr(header) | 517 df_key = groups + repr(header) | 
| 494 | 518 | 
| 495 groups = pd.read_csv(groups, sep='\t', header=header, | 519 groups = pd.read_csv(groups, sep="\t", header=header, parse_dates=True) | 
| 496 parse_dates=True) | |
| 497 loaded_df[df_key] = groups | 520 loaded_df[df_key] = groups | 
| 498 | 521 | 
| 499 groups = read_columns( | 522 groups = read_columns( | 
| 500 groups, | 523 groups, | 
| 501 c=c, | 524 c=c, | 
| 502 c_option=column_option, | 525 c_option=column_option, | 
| 503 sep='\t', | 526 sep="\t", | 
| 504 header=header, | 527 header=header, | 
| 505 parse_dates=True) | 528 parse_dates=True, | 
| 529 ) | |
| 506 groups = groups.ravel() | 530 groups = groups.ravel() | 
| 507 options['cv_selector']['groups_selector'] = groups | 531 options["cv_selector"]["groups_selector"] = groups | 
| 508 | 532 | 
| 509 splitter, groups = get_cv(options.pop('cv_selector')) | 533 splitter, groups = get_cv(options.pop("cv_selector")) | 
| 510 options['cv'] = splitter | 534 options["cv"] = splitter | 
| 511 primary_scoring = options['scoring']['primary_scoring'] | 535 primary_scoring = options["scoring"]["primary_scoring"] | 
| 512 options['scoring'] = get_scoring(options['scoring']) | 536 # get_scoring() expects secondary_scoring to be a comma separated string (not a list) | 
| 513 if options['error_score']: | 537 # Check if secondary_scoring is specified | 
| 514 options['error_score'] = 'raise' | 538 secondary_scoring = options["scoring"].get("secondary_scoring", None) | 
| 515 else: | 539 if secondary_scoring is not None: | 
| 516 options['error_score'] = np.NaN | 540 # If secondary_scoring is specified, convert the list into comman separated string | 
| 517 if options['refit'] and isinstance(options['scoring'], dict): | 541 options["scoring"]["secondary_scoring"] = ",".join(options["scoring"]["secondary_scoring"]) | 
| 518 options['refit'] = primary_scoring | 542 options["scoring"] = get_scoring(options["scoring"]) | 
| 519 if 'pre_dispatch' in options and options['pre_dispatch'] == '': | 543 if options["error_score"]: | 
| 520 options['pre_dispatch'] = None | 544 options["error_score"] = "raise" | 
| 521 | 545 else: | 
| 522 params_builder = params['search_schemes']['search_params_builder'] | 546 options["error_score"] = np.NaN | 
| 547 if options["refit"] and isinstance(options["scoring"], dict): | |
| 548 options["refit"] = primary_scoring | |
| 549 if "pre_dispatch" in options and options["pre_dispatch"] == "": | |
| 550 options["pre_dispatch"] = None | |
| 551 | |
| 552 params_builder = params["search_schemes"]["search_params_builder"] | |
| 523 param_grid = _eval_search_params(params_builder) | 553 param_grid = _eval_search_params(params_builder) | 
| 524 | 554 | 
| 525 estimator = clean_params(estimator) | 555 estimator = clean_params(estimator) | 
| 526 | 556 | 
| 527 # save the SearchCV object without fit | 557 # save the SearchCV object without fit | 
| 528 if params['save'] == 'save_no_fit': | 558 if params["save"] == "save_no_fit": | 
| 529 searcher = optimizer(estimator, param_grid, **options) | 559 searcher = optimizer(estimator, param_grid, **options) | 
| 530 print(searcher) | 560 print(searcher) | 
| 531 with open(outfile_object, 'wb') as output_handler: | 561 with open(outfile_object, "wb") as output_handler: | 
| 532 pickle.dump(searcher, output_handler, | 562 pickle.dump(searcher, output_handler, pickle.HIGHEST_PROTOCOL) | 
| 533 pickle.HIGHEST_PROTOCOL) | |
| 534 return 0 | 563 return 0 | 
| 535 | 564 | 
| 536 # read inputs and loads new attributes, like paths | 565 # read inputs and loads new attributes, like paths | 
| 537 estimator, X, y = _handle_X_y(estimator, params, infile1, infile2, | 566 estimator, X, y = _handle_X_y( | 
| 538 loaded_df=loaded_df, ref_seq=ref_seq, | 567 estimator, | 
| 539 intervals=intervals, targets=targets, | 568 params, | 
| 540 fasta_path=fasta_path) | 569 infile1, | 
| 570 infile2, | |
| 571 loaded_df=loaded_df, | |
| 572 ref_seq=ref_seq, | |
| 573 intervals=intervals, | |
| 574 targets=targets, | |
| 575 fasta_path=fasta_path, | |
| 576 ) | |
| 541 | 577 | 
| 542 # cache iraps_core fits could increase search speed significantly | 578 # cache iraps_core fits could increase search speed significantly | 
| 543 memory = joblib.Memory(location=CACHE_DIR, verbose=0) | 579 memory = joblib.Memory(location=CACHE_DIR, verbose=0) | 
| 544 main_est = get_main_estimator(estimator) | 580 main_est = get_main_estimator(estimator) | 
| 545 if main_est.__class__.__name__ == 'IRAPSClassifier': | 581 if main_est.__class__.__name__ == "IRAPSClassifier": | 
| 546 main_est.set_params(memory=memory) | 582 main_est.set_params(memory=memory) | 
| 547 | 583 | 
| 548 searcher = optimizer(estimator, param_grid, **options) | 584 searcher = optimizer(estimator, param_grid, **options) | 
| 549 | 585 | 
| 550 split_mode = params['outer_split'].pop('split_mode') | 586 split_mode = params["outer_split"].pop("split_mode") | 
| 551 | 587 | 
| 552 if split_mode == 'nested_cv': | 588 if split_mode == "nested_cv": | 
| 553 # make sure refit is choosen | 589 # make sure refit is choosen | 
| 554 # this could be True for sklearn models, but not the case for | 590 # this could be True for sklearn models, but not the case for | 
| 555 # deep learning models | 591 # deep learning models | 
| 556 if not options['refit'] and \ | 592 if not options["refit"] and not all(hasattr(estimator, attr) for attr in ("config", "model_type")): | 
| 557 not all(hasattr(estimator, attr) | |
| 558 for attr in ('config', 'model_type')): | |
| 559 warnings.warn("Refit is change to `True` for nested validation!") | 593 warnings.warn("Refit is change to `True` for nested validation!") | 
| 560 setattr(searcher, 'refit', True) | 594 setattr(searcher, "refit", True) | 
| 561 | 595 | 
| 562 outer_cv, _ = get_cv(params['outer_split']['cv_selector']) | 596 outer_cv, _ = get_cv(params["outer_split"]["cv_selector"]) | 
| 563 # nested CV, outer cv using cross_validate | 597 # nested CV, outer cv using cross_validate | 
| 564 if options['error_score'] == 'raise': | 598 if options["error_score"] == "raise": | 
| 565 rval = cross_validate( | 599 rval = cross_validate( | 
| 566 searcher, X, y, scoring=options['scoring'], | 600 searcher, | 
| 567 cv=outer_cv, n_jobs=N_JOBS, | 601 X, | 
| 568 verbose=options['verbose'], | 602 y, | 
| 569 return_estimator=(params['save'] == 'save_estimator'), | 603 scoring=options["scoring"], | 
| 570 error_score=options['error_score'], | 604 cv=outer_cv, | 
| 571 return_train_score=True) | 605 n_jobs=N_JOBS, | 
| 606 verbose=options["verbose"], | |
| 607 return_estimator=(params["save"] == "save_estimator"), | |
| 608 error_score=options["error_score"], | |
| 609 return_train_score=True, | |
| 610 ) | |
| 572 else: | 611 else: | 
| 573 warnings.simplefilter('always', FitFailedWarning) | 612 warnings.simplefilter("always", FitFailedWarning) | 
| 574 with warnings.catch_warnings(record=True) as w: | 613 with warnings.catch_warnings(record=True) as w: | 
| 575 try: | 614 try: | 
| 576 rval = cross_validate( | 615 rval = cross_validate( | 
| 577 searcher, X, y, | 616 searcher, | 
| 578 scoring=options['scoring'], | 617 X, | 
| 579 cv=outer_cv, n_jobs=N_JOBS, | 618 y, | 
| 580 verbose=options['verbose'], | 619 scoring=options["scoring"], | 
| 581 return_estimator=(params['save'] == 'save_estimator'), | 620 cv=outer_cv, | 
| 582 error_score=options['error_score'], | 621 n_jobs=N_JOBS, | 
| 583 return_train_score=True) | 622 verbose=options["verbose"], | 
| 623 return_estimator=(params["save"] == "save_estimator"), | |
| 624 error_score=options["error_score"], | |
| 625 return_train_score=True, | |
| 626 ) | |
| 584 except ValueError: | 627 except ValueError: | 
| 585 pass | 628 pass | 
| 586 for warning in w: | 629 for warning in w: | 
| 587 print(repr(warning.message)) | 630 print(repr(warning.message)) | 
| 588 | 631 | 
| 589 fitted_searchers = rval.pop('estimator', []) | 632 fitted_searchers = rval.pop("estimator", []) | 
| 590 if fitted_searchers: | 633 if fitted_searchers: | 
| 591 import os | 634 import os | 
| 635 | |
| 592 pwd = os.getcwd() | 636 pwd = os.getcwd() | 
| 593 save_dir = os.path.join(pwd, 'cv_results_in_folds') | 637 save_dir = os.path.join(pwd, "cv_results_in_folds") | 
| 594 try: | 638 try: | 
| 595 os.mkdir(save_dir) | 639 os.mkdir(save_dir) | 
| 596 for idx, obj in enumerate(fitted_searchers): | 640 for idx, obj in enumerate(fitted_searchers): | 
| 597 target_name = 'cv_results_' + '_' + 'split%d' % idx | 641 target_name = "cv_results_" + "_" + "split%d" % idx | 
| 598 target_path = os.path.join(pwd, save_dir, target_name) | 642 target_path = os.path.join(pwd, save_dir, target_name) | 
| 599 cv_results_ = getattr(obj, 'cv_results_', None) | 643 cv_results_ = getattr(obj, "cv_results_", None) | 
| 600 if not cv_results_: | 644 if not cv_results_: | 
| 601 print("%s is not available" % target_name) | 645 print("%s is not available" % target_name) | 
| 602 continue | 646 continue | 
| 603 cv_results_ = pd.DataFrame(cv_results_) | 647 cv_results_ = pd.DataFrame(cv_results_) | 
| 604 cv_results_ = cv_results_[sorted(cv_results_.columns)] | 648 cv_results_ = cv_results_[sorted(cv_results_.columns)] | 
| 605 cv_results_.to_csv(target_path, sep='\t', header=True, | 649 cv_results_.to_csv(target_path, sep="\t", header=True, index=False) | 
| 606 index=False) | |
| 607 except Exception as e: | 650 except Exception as e: | 
| 608 print(e) | 651 print(e) | 
| 609 finally: | 652 finally: | 
| 610 del os | 653 del os | 
| 611 | 654 | 
| 612 keys = list(rval.keys()) | 655 keys = list(rval.keys()) | 
| 613 for k in keys: | 656 for k in keys: | 
| 614 if k.startswith('test'): | 657 if k.startswith("test"): | 
| 615 rval['mean_' + k] = np.mean(rval[k]) | 658 rval["mean_" + k] = np.mean(rval[k]) | 
| 616 rval['std_' + k] = np.std(rval[k]) | 659 rval["std_" + k] = np.std(rval[k]) | 
| 617 if k.endswith('time'): | 660 if k.endswith("time"): | 
| 618 rval.pop(k) | 661 rval.pop(k) | 
| 619 rval = pd.DataFrame(rval) | 662 rval = pd.DataFrame(rval) | 
| 620 rval = rval[sorted(rval.columns)] | 663 rval = rval[sorted(rval.columns)] | 
| 621 rval.to_csv(path_or_buf=outfile_result, sep='\t', header=True, | 664 rval.to_csv(path_or_buf=outfile_result, sep="\t", header=True, index=False) | 
| 622 index=False) | |
| 623 | |
| 624 return 0 | |
| 625 | |
| 626 # deprecate train test split mode | 665 # deprecate train test split mode | 
| 627 """searcher = _do_train_test_split_val( | 666 """searcher = _do_train_test_split_val( | 
| 628 searcher, X, y, params, | 667 searcher, X, y, params, | 
| 629 primary_scoring=primary_scoring, | 668 primary_scoring=primary_scoring, | 
| 630 error_score=options['error_score'], | 669 error_score=options['error_score'], | 
| 631 groups=groups, | 670 groups=groups, | 
| 632 outfile=outfile_result)""" | 671 outfile=outfile_result)""" | 
| 672 return 0 | |
| 633 | 673 | 
| 634 # no outer split | 674 # no outer split | 
| 635 else: | 675 else: | 
| 636 searcher.set_params(n_jobs=N_JOBS) | 676 searcher.set_params(n_jobs=N_JOBS) | 
| 637 if options['error_score'] == 'raise': | 677 if options["error_score"] == "raise": | 
| 638 searcher.fit(X, y, groups=groups) | 678 searcher.fit(X, y, groups=groups) | 
| 639 else: | 679 else: | 
| 640 warnings.simplefilter('always', FitFailedWarning) | 680 warnings.simplefilter("always", FitFailedWarning) | 
| 641 with warnings.catch_warnings(record=True) as w: | 681 with warnings.catch_warnings(record=True) as w: | 
| 642 try: | 682 try: | 
| 643 searcher.fit(X, y, groups=groups) | 683 searcher.fit(X, y, groups=groups) | 
| 644 except ValueError: | 684 except ValueError: | 
| 645 pass | 685 pass | 
| 646 for warning in w: | 686 for warning in w: | 
| 647 print(repr(warning.message)) | 687 print(repr(warning.message)) | 
| 648 | 688 | 
| 649 cv_results = pd.DataFrame(searcher.cv_results_) | 689 cv_results = pd.DataFrame(searcher.cv_results_) | 
| 650 cv_results = cv_results[sorted(cv_results.columns)] | 690 cv_results = cv_results[sorted(cv_results.columns)] | 
| 651 cv_results.to_csv(path_or_buf=outfile_result, sep='\t', | 691 cv_results.to_csv(path_or_buf=outfile_result, sep="\t", header=True, index=False) | 
| 652 header=True, index=False) | |
| 653 | 692 | 
| 654 memory.clear(warn=False) | 693 memory.clear(warn=False) | 
| 655 | 694 | 
| 656 # output best estimator, and weights if applicable | 695 # output best estimator, and weights if applicable | 
| 657 if outfile_object: | 696 if outfile_object: | 
| 658 best_estimator_ = getattr(searcher, 'best_estimator_', None) | 697 best_estimator_ = getattr(searcher, "best_estimator_", None) | 
| 659 if not best_estimator_: | 698 if not best_estimator_: | 
| 660 warnings.warn("GridSearchCV object has no attribute " | 699 warnings.warn( | 
| 661 "'best_estimator_', because either it's " | 700 "GridSearchCV object has no attribute " | 
| 662 "nested gridsearch or `refit` is False!") | 701 "'best_estimator_', because either it's " | 
| 702 "nested gridsearch or `refit` is False!" | |
| 703 ) | |
| 663 return | 704 return | 
| 664 | 705 | 
| 665 # clean prams | 706 # clean prams | 
| 666 best_estimator_ = clean_params(best_estimator_) | 707 best_estimator_ = clean_params(best_estimator_) | 
| 667 | 708 | 
| 668 main_est = get_main_estimator(best_estimator_) | 709 main_est = get_main_estimator(best_estimator_) | 
| 669 | 710 | 
| 670 if hasattr(main_est, 'model_') \ | 711 if hasattr(main_est, "model_") and hasattr(main_est, "save_weights"): | 
| 671 and hasattr(main_est, 'save_weights'): | |
| 672 if outfile_weights: | 712 if outfile_weights: | 
| 673 main_est.save_weights(outfile_weights) | 713 main_est.save_weights(outfile_weights) | 
| 674 del main_est.model_ | 714 del main_est.model_ | 
| 675 del main_est.fit_params | 715 del main_est.fit_params | 
| 676 del main_est.model_class_ | 716 del main_est.model_class_ | 
| 677 del main_est.validation_data | 717 del main_est.validation_data | 
| 678 if getattr(main_est, 'data_generator_', None): | 718 if getattr(main_est, "data_generator_", None): | 
| 679 del main_est.data_generator_ | 719 del main_est.data_generator_ | 
| 680 | 720 | 
| 681 with open(outfile_object, 'wb') as output_handler: | 721 with open(outfile_object, "wb") as output_handler: | 
| 682 print("Best estimator is saved: %s " % repr(best_estimator_)) | 722 print("Best estimator is saved: %s " % repr(best_estimator_)) | 
| 683 pickle.dump(best_estimator_, output_handler, | 723 pickle.dump(best_estimator_, output_handler, pickle.HIGHEST_PROTOCOL) | 
| 684 pickle.HIGHEST_PROTOCOL) | 724 | 
| 685 | 725 | 
| 686 | 726 if __name__ == "__main__": | 
| 687 if __name__ == '__main__': | |
| 688 aparser = argparse.ArgumentParser() | 727 aparser = argparse.ArgumentParser() | 
| 689 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | 728 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | 
| 690 aparser.add_argument("-e", "--estimator", dest="infile_estimator") | 729 aparser.add_argument("-e", "--estimator", dest="infile_estimator") | 
| 691 aparser.add_argument("-X", "--infile1", dest="infile1") | 730 aparser.add_argument("-X", "--infile1", dest="infile1") | 
| 692 aparser.add_argument("-y", "--infile2", dest="infile2") | 731 aparser.add_argument("-y", "--infile2", dest="infile2") | 
| 698 aparser.add_argument("-b", "--intervals", dest="intervals") | 737 aparser.add_argument("-b", "--intervals", dest="intervals") | 
| 699 aparser.add_argument("-t", "--targets", dest="targets") | 738 aparser.add_argument("-t", "--targets", dest="targets") | 
| 700 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") | 739 aparser.add_argument("-f", "--fasta_path", dest="fasta_path") | 
| 701 args = aparser.parse_args() | 740 args = aparser.parse_args() | 
| 702 | 741 | 
| 703 main(args.inputs, args.infile_estimator, args.infile1, args.infile2, | 742 main( | 
| 704 args.outfile_result, outfile_object=args.outfile_object, | 743 args.inputs, | 
| 705 outfile_weights=args.outfile_weights, groups=args.groups, | 744 args.infile_estimator, | 
| 706 ref_seq=args.ref_seq, intervals=args.intervals, | 745 args.infile1, | 
| 707 targets=args.targets, fasta_path=args.fasta_path) | 746 args.infile2, | 
| 747 args.outfile_result, | |
| 748 outfile_object=args.outfile_object, | |
| 749 outfile_weights=args.outfile_weights, | |
| 750 groups=args.groups, | |
| 751 ref_seq=args.ref_seq, | |
| 752 intervals=args.intervals, | |
| 753 targets=args.targets, | |
| 754 fasta_path=args.fasta_path, | |
| 755 ) | 
