Mercurial > repos > bgruening > sklearn_stacking_ensemble_models
comparison search_model_validation.py @ 0:47467890f541 draft
planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit ab963ec9498bd05d2fb2f24f75adb2fccae7958c
| author | bgruening |
|---|---|
| date | Wed, 15 May 2019 07:03:47 -0400 |
| parents | |
| children | e18d9b17c322 |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:47467890f541 |
|---|---|
| 1 import argparse | |
| 2 import collections | |
| 3 import imblearn | |
| 4 import json | |
| 5 import numpy as np | |
| 6 import pandas | |
| 7 import pickle | |
| 8 import skrebate | |
| 9 import sklearn | |
| 10 import sys | |
| 11 import xgboost | |
| 12 import warnings | |
| 13 import iraps_classifier | |
| 14 import model_validations | |
| 15 import preprocessors | |
| 16 import feature_selectors | |
| 17 from imblearn import under_sampling, over_sampling, combine | |
| 18 from scipy.io import mmread | |
| 19 from mlxtend import classifier, regressor | |
| 20 from sklearn import (cluster, compose, decomposition, ensemble, | |
| 21 feature_extraction, feature_selection, | |
| 22 gaussian_process, kernel_approximation, metrics, | |
| 23 model_selection, naive_bayes, neighbors, | |
| 24 pipeline, preprocessing, svm, linear_model, | |
| 25 tree, discriminant_analysis) | |
| 26 from sklearn.exceptions import FitFailedWarning | |
| 27 from sklearn.externals import joblib | |
| 28 from sklearn.model_selection._validation import _score | |
| 29 | |
| 30 from utils import (SafeEval, get_cv, get_scoring, get_X_y, | |
| 31 load_model, read_columns) | |
| 32 from model_validations import train_test_split | |
| 33 | |
| 34 | |
| 35 N_JOBS = int(__import__('os').environ.get('GALAXY_SLOTS', 1)) | |
| 36 CACHE_DIR = './cached' | |
| 37 NON_SEARCHABLE = ('n_jobs', 'pre_dispatch', 'memory', 'steps', | |
| 38 'nthread', 'verbose') | |
| 39 | |
| 40 | |
| 41 def _eval_search_params(params_builder): | |
| 42 search_params = {} | |
| 43 | |
| 44 for p in params_builder['param_set']: | |
| 45 search_list = p['sp_list'].strip() | |
| 46 if search_list == '': | |
| 47 continue | |
| 48 | |
| 49 param_name = p['sp_name'] | |
| 50 if param_name.lower().endswith(NON_SEARCHABLE): | |
| 51 print("Warning: `%s` is not eligible for search and was " | |
| 52 "omitted!" % param_name) | |
| 53 continue | |
| 54 | |
| 55 if not search_list.startswith(':'): | |
| 56 safe_eval = SafeEval(load_scipy=True, load_numpy=True) | |
| 57 ev = safe_eval(search_list) | |
| 58 search_params[param_name] = ev | |
| 59 else: | |
| 60 # Have `:` before search list, asks for estimator evaluatio | |
| 61 safe_eval_es = SafeEval(load_estimators=True) | |
| 62 search_list = search_list[1:].strip() | |
| 63 # TODO maybe add regular express check | |
| 64 ev = safe_eval_es(search_list) | |
| 65 preprocessors = ( | |
| 66 preprocessing.StandardScaler(), preprocessing.Binarizer(), | |
| 67 preprocessing.Imputer(), preprocessing.MaxAbsScaler(), | |
| 68 preprocessing.Normalizer(), preprocessing.MinMaxScaler(), | |
| 69 preprocessing.PolynomialFeatures(), | |
| 70 preprocessing.RobustScaler(), feature_selection.SelectKBest(), | |
| 71 feature_selection.GenericUnivariateSelect(), | |
| 72 feature_selection.SelectPercentile(), | |
| 73 feature_selection.SelectFpr(), feature_selection.SelectFdr(), | |
| 74 feature_selection.SelectFwe(), | |
| 75 feature_selection.VarianceThreshold(), | |
| 76 decomposition.FactorAnalysis(random_state=0), | |
| 77 decomposition.FastICA(random_state=0), | |
| 78 decomposition.IncrementalPCA(), | |
| 79 decomposition.KernelPCA(random_state=0, n_jobs=N_JOBS), | |
| 80 decomposition.LatentDirichletAllocation( | |
| 81 random_state=0, n_jobs=N_JOBS), | |
| 82 decomposition.MiniBatchDictionaryLearning( | |
| 83 random_state=0, n_jobs=N_JOBS), | |
| 84 decomposition.MiniBatchSparsePCA( | |
| 85 random_state=0, n_jobs=N_JOBS), | |
| 86 decomposition.NMF(random_state=0), | |
| 87 decomposition.PCA(random_state=0), | |
| 88 decomposition.SparsePCA(random_state=0, n_jobs=N_JOBS), | |
| 89 decomposition.TruncatedSVD(random_state=0), | |
| 90 kernel_approximation.Nystroem(random_state=0), | |
| 91 kernel_approximation.RBFSampler(random_state=0), | |
| 92 kernel_approximation.AdditiveChi2Sampler(), | |
| 93 kernel_approximation.SkewedChi2Sampler(random_state=0), | |
| 94 cluster.FeatureAgglomeration(), | |
| 95 skrebate.ReliefF(n_jobs=N_JOBS), | |
| 96 skrebate.SURF(n_jobs=N_JOBS), | |
| 97 skrebate.SURFstar(n_jobs=N_JOBS), | |
| 98 skrebate.MultiSURF(n_jobs=N_JOBS), | |
| 99 skrebate.MultiSURFstar(n_jobs=N_JOBS), | |
| 100 imblearn.under_sampling.ClusterCentroids( | |
| 101 random_state=0, n_jobs=N_JOBS), | |
| 102 imblearn.under_sampling.CondensedNearestNeighbour( | |
| 103 random_state=0, n_jobs=N_JOBS), | |
| 104 imblearn.under_sampling.EditedNearestNeighbours( | |
| 105 random_state=0, n_jobs=N_JOBS), | |
| 106 imblearn.under_sampling.RepeatedEditedNearestNeighbours( | |
| 107 random_state=0, n_jobs=N_JOBS), | |
| 108 imblearn.under_sampling.AllKNN(random_state=0, n_jobs=N_JOBS), | |
| 109 imblearn.under_sampling.InstanceHardnessThreshold( | |
| 110 random_state=0, n_jobs=N_JOBS), | |
| 111 imblearn.under_sampling.NearMiss( | |
| 112 random_state=0, n_jobs=N_JOBS), | |
| 113 imblearn.under_sampling.NeighbourhoodCleaningRule( | |
| 114 random_state=0, n_jobs=N_JOBS), | |
| 115 imblearn.under_sampling.OneSidedSelection( | |
| 116 random_state=0, n_jobs=N_JOBS), | |
| 117 imblearn.under_sampling.RandomUnderSampler( | |
| 118 random_state=0), | |
| 119 imblearn.under_sampling.TomekLinks( | |
| 120 random_state=0, n_jobs=N_JOBS), | |
| 121 imblearn.over_sampling.ADASYN(random_state=0, n_jobs=N_JOBS), | |
| 122 imblearn.over_sampling.RandomOverSampler(random_state=0), | |
| 123 imblearn.over_sampling.SMOTE(random_state=0, n_jobs=N_JOBS), | |
| 124 imblearn.over_sampling.SVMSMOTE(random_state=0, n_jobs=N_JOBS), | |
| 125 imblearn.over_sampling.BorderlineSMOTE( | |
| 126 random_state=0, n_jobs=N_JOBS), | |
| 127 imblearn.over_sampling.SMOTENC( | |
| 128 categorical_features=[], random_state=0, n_jobs=N_JOBS), | |
| 129 imblearn.combine.SMOTEENN(random_state=0), | |
| 130 imblearn.combine.SMOTETomek(random_state=0)) | |
| 131 newlist = [] | |
| 132 for obj in ev: | |
| 133 if obj is None: | |
| 134 newlist.append(None) | |
| 135 elif obj == 'all_0': | |
| 136 newlist.extend(preprocessors[0:36]) | |
| 137 elif obj == 'sk_prep_all': # no KernalCenter() | |
| 138 newlist.extend(preprocessors[0:8]) | |
| 139 elif obj == 'fs_all': | |
| 140 newlist.extend(preprocessors[8:15]) | |
| 141 elif obj == 'decomp_all': | |
| 142 newlist.extend(preprocessors[15:26]) | |
| 143 elif obj == 'k_appr_all': | |
| 144 newlist.extend(preprocessors[26:30]) | |
| 145 elif obj == 'reb_all': | |
| 146 newlist.extend(preprocessors[31:36]) | |
| 147 elif obj == 'imb_all': | |
| 148 newlist.extend(preprocessors[36:55]) | |
| 149 elif type(obj) is int and -1 < obj < len(preprocessors): | |
| 150 newlist.append(preprocessors[obj]) | |
| 151 elif hasattr(obj, 'get_params'): # user uploaded object | |
| 152 if 'n_jobs' in obj.get_params(): | |
| 153 newlist.append(obj.set_params(n_jobs=N_JOBS)) | |
| 154 else: | |
| 155 newlist.append(obj) | |
| 156 else: | |
| 157 sys.exit("Unsupported estimator type: %r" % (obj)) | |
| 158 | |
| 159 search_params[param_name] = newlist | |
| 160 | |
| 161 return search_params | |
| 162 | |
| 163 | |
| 164 def main(inputs, infile_estimator, infile1, infile2, | |
| 165 outfile_result, outfile_object=None, groups=None): | |
| 166 """ | |
| 167 Parameter | |
| 168 --------- | |
| 169 inputs : str | |
| 170 File path to galaxy tool parameter | |
| 171 | |
| 172 infile_estimator : str | |
| 173 File path to estimator | |
| 174 | |
| 175 infile1 : str | |
| 176 File path to dataset containing features | |
| 177 | |
| 178 infile2 : str | |
| 179 File path to dataset containing target values | |
| 180 | |
| 181 outfile_result : str | |
| 182 File path to save the results, either cv_results or test result | |
| 183 | |
| 184 outfile_object : str, optional | |
| 185 File path to save searchCV object | |
| 186 | |
| 187 groups : str | |
| 188 File path to dataset containing groups labels | |
| 189 """ | |
| 190 | |
| 191 warnings.simplefilter('ignore') | |
| 192 | |
| 193 with open(inputs, 'r') as param_handler: | |
| 194 params = json.load(param_handler) | |
| 195 if groups: | |
| 196 (params['search_schemes']['options']['cv_selector'] | |
| 197 ['groups_selector']['infile_g']) = groups | |
| 198 | |
| 199 params_builder = params['search_schemes']['search_params_builder'] | |
| 200 | |
| 201 input_type = params['input_options']['selected_input'] | |
| 202 if input_type == 'tabular': | |
| 203 header = 'infer' if params['input_options']['header1'] else None | |
| 204 column_option = (params['input_options']['column_selector_options_1'] | |
| 205 ['selected_column_selector_option']) | |
| 206 if column_option in ['by_index_number', 'all_but_by_index_number', | |
| 207 'by_header_name', 'all_but_by_header_name']: | |
| 208 c = params['input_options']['column_selector_options_1']['col1'] | |
| 209 else: | |
| 210 c = None | |
| 211 X = read_columns( | |
| 212 infile1, | |
| 213 c=c, | |
| 214 c_option=column_option, | |
| 215 sep='\t', | |
| 216 header=header, | |
| 217 parse_dates=True).astype(float) | |
| 218 else: | |
| 219 X = mmread(open(infile1, 'r')) | |
| 220 | |
| 221 header = 'infer' if params['input_options']['header2'] else None | |
| 222 column_option = (params['input_options']['column_selector_options_2'] | |
| 223 ['selected_column_selector_option2']) | |
| 224 if column_option in ['by_index_number', 'all_but_by_index_number', | |
| 225 'by_header_name', 'all_but_by_header_name']: | |
| 226 c = params['input_options']['column_selector_options_2']['col2'] | |
| 227 else: | |
| 228 c = None | |
| 229 y = read_columns( | |
| 230 infile2, | |
| 231 c=c, | |
| 232 c_option=column_option, | |
| 233 sep='\t', | |
| 234 header=header, | |
| 235 parse_dates=True) | |
| 236 y = y.ravel() | |
| 237 | |
| 238 optimizer = params['search_schemes']['selected_search_scheme'] | |
| 239 optimizer = getattr(model_selection, optimizer) | |
| 240 | |
| 241 options = params['search_schemes']['options'] | |
| 242 | |
| 243 splitter, groups = get_cv(options.pop('cv_selector')) | |
| 244 options['cv'] = splitter | |
| 245 options['n_jobs'] = N_JOBS | |
| 246 primary_scoring = options['scoring']['primary_scoring'] | |
| 247 options['scoring'] = get_scoring(options['scoring']) | |
| 248 if options['error_score']: | |
| 249 options['error_score'] = 'raise' | |
| 250 else: | |
| 251 options['error_score'] = np.NaN | |
| 252 if options['refit'] and isinstance(options['scoring'], dict): | |
| 253 options['refit'] = primary_scoring | |
| 254 if 'pre_dispatch' in options and options['pre_dispatch'] == '': | |
| 255 options['pre_dispatch'] = None | |
| 256 | |
| 257 with open(infile_estimator, 'rb') as estimator_handler: | |
| 258 estimator = load_model(estimator_handler) | |
| 259 | |
| 260 memory = joblib.Memory(location=CACHE_DIR, verbose=0) | |
| 261 # cache iraps_core fits could increase search speed significantly | |
| 262 if estimator.__class__.__name__ == 'IRAPSClassifier': | |
| 263 estimator.set_params(memory=memory) | |
| 264 else: | |
| 265 for p, v in estimator.get_params().items(): | |
| 266 if p.endswith('memory'): | |
| 267 if len(p) > 8 and p[:-8].endswith('irapsclassifier'): | |
| 268 # cache iraps_core fits could increase search | |
| 269 # speed significantly | |
| 270 new_params = {p: memory} | |
| 271 estimator.set_params(**new_params) | |
| 272 elif v: | |
| 273 new_params = {p, None} | |
| 274 estimator.set_params(**new_params) | |
| 275 elif p.endswith('n_jobs'): | |
| 276 new_params = {p: 1} | |
| 277 estimator.set_params(**new_params) | |
| 278 | |
| 279 param_grid = _eval_search_params(params_builder) | |
| 280 searcher = optimizer(estimator, param_grid, **options) | |
| 281 | |
| 282 # do train_test_split | |
| 283 do_train_test_split = params['train_test_split'].pop('do_split') | |
| 284 if do_train_test_split == 'yes': | |
| 285 # make sure refit is choosen | |
| 286 if not options['refit']: | |
| 287 raise ValueError("Refit must be `True` for shuffle splitting!") | |
| 288 split_options = params['train_test_split'] | |
| 289 | |
| 290 # splits | |
| 291 if split_options['shuffle'] == 'stratified': | |
| 292 split_options['labels'] = y | |
| 293 X, X_test, y, y_test = train_test_split(X, y, **split_options) | |
| 294 elif split_options['shuffle'] == 'group': | |
| 295 if not groups: | |
| 296 raise ValueError("No group based CV option was " | |
| 297 "choosen for group shuffle!") | |
| 298 split_options['labels'] = groups | |
| 299 X, X_test, y, y_test, groups, _ =\ | |
| 300 train_test_split(X, y, **split_options) | |
| 301 else: | |
| 302 if split_options['shuffle'] == 'None': | |
| 303 split_options['shuffle'] = None | |
| 304 X, X_test, y, y_test =\ | |
| 305 train_test_split(X, y, **split_options) | |
| 306 # end train_test_split | |
| 307 | |
| 308 if options['error_score'] == 'raise': | |
| 309 searcher.fit(X, y, groups=groups) | |
| 310 else: | |
| 311 warnings.simplefilter('always', FitFailedWarning) | |
| 312 with warnings.catch_warnings(record=True) as w: | |
| 313 try: | |
| 314 searcher.fit(X, y, groups=groups) | |
| 315 except ValueError: | |
| 316 pass | |
| 317 for warning in w: | |
| 318 print(repr(warning.message)) | |
| 319 | |
| 320 if do_train_test_split == 'no': | |
| 321 # save results | |
| 322 cv_results = pandas.DataFrame(searcher.cv_results_) | |
| 323 cv_results = cv_results[sorted(cv_results.columns)] | |
| 324 cv_results.to_csv(path_or_buf=outfile_result, sep='\t', | |
| 325 header=True, index=False) | |
| 326 | |
| 327 # output test result using best_estimator_ | |
| 328 else: | |
| 329 best_estimator_ = searcher.best_estimator_ | |
| 330 if isinstance(options['scoring'], collections.Mapping): | |
| 331 is_multimetric = True | |
| 332 else: | |
| 333 is_multimetric = False | |
| 334 | |
| 335 test_score = _score(best_estimator_, X_test, | |
| 336 y_test, options['scoring'], | |
| 337 is_multimetric=is_multimetric) | |
| 338 if not is_multimetric: | |
| 339 test_score = {primary_scoring: test_score} | |
| 340 for key, value in test_score.items(): | |
| 341 test_score[key] = [value] | |
| 342 result_df = pandas.DataFrame(test_score) | |
| 343 result_df.to_csv(path_or_buf=outfile_result, sep='\t', | |
| 344 header=True, index=False) | |
| 345 | |
| 346 memory.clear(warn=False) | |
| 347 | |
| 348 if outfile_object: | |
| 349 with open(outfile_object, 'wb') as output_handler: | |
| 350 pickle.dump(searcher, output_handler, pickle.HIGHEST_PROTOCOL) | |
| 351 | |
| 352 | |
| 353 if __name__ == '__main__': | |
| 354 aparser = argparse.ArgumentParser() | |
| 355 aparser.add_argument("-i", "--inputs", dest="inputs", required=True) | |
| 356 aparser.add_argument("-e", "--estimator", dest="infile_estimator") | |
| 357 aparser.add_argument("-X", "--infile1", dest="infile1") | |
| 358 aparser.add_argument("-y", "--infile2", dest="infile2") | |
| 359 aparser.add_argument("-r", "--outfile_result", dest="outfile_result") | |
| 360 aparser.add_argument("-o", "--outfile_object", dest="outfile_object") | |
| 361 aparser.add_argument("-g", "--groups", dest="groups") | |
| 362 args = aparser.parse_args() | |
| 363 | |
| 364 main(args.inputs, args.infile_estimator, args.infile1, args.infile2, | |
| 365 args.outfile_result, outfile_object=args.outfile_object, | |
| 366 groups=args.groups) |
