Mercurial > repos > bgruening > sklearn_stacking_ensemble_models
comparison keras_train_and_eval.py @ 10:2d890789ac48 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 208a8d348e7c7a182cfbe1b6f17868146428a7e2"
| author | bgruening | 
|---|---|
| date | Tue, 13 Apr 2021 21:46:25 +0000 | 
| parents | b8c92e94ac1d | 
| children | 0380f10c4e04 | 
   comparison
  equal
  deleted
  inserted
  replaced
| 9:b8c92e94ac1d | 10:2d890789ac48 | 
|---|---|
| 1 import argparse | 1 import argparse | 
| 2 import joblib | |
| 3 import json | 2 import json | 
| 4 import numpy as np | |
| 5 import os | 3 import os | 
| 6 import pandas as pd | |
| 7 import pickle | 4 import pickle | 
| 8 import warnings | 5 import warnings | 
| 9 from itertools import chain | 6 from itertools import chain | 
| 10 from scipy.io import mmread | 7 | 
| 11 from sklearn.pipeline import Pipeline | 8 import joblib | 
| 12 from sklearn.metrics.scorer import _check_multimetric_scoring | 9 import numpy as np | 
| 13 from sklearn.model_selection._validation import _score | 10 import pandas as pd | 
| 14 from sklearn.model_selection import _search, _validation | |
| 15 from sklearn.utils import indexable, safe_indexing | |
| 16 | |
| 17 from galaxy_ml.externals.selene_sdk.utils import compute_score | 11 from galaxy_ml.externals.selene_sdk.utils import compute_score | 
| 12 from galaxy_ml.keras_galaxy_models import _predict_generator | |
| 18 from galaxy_ml.model_validations import train_test_split | 13 from galaxy_ml.model_validations import train_test_split | 
| 19 from galaxy_ml.keras_galaxy_models import _predict_generator | |
| 20 from galaxy_ml.utils import ( | 14 from galaxy_ml.utils import ( | 
| 21 SafeEval, | 15 clean_params, | 
| 16 get_main_estimator, | |
| 17 get_module, | |
| 22 get_scoring, | 18 get_scoring, | 
| 23 load_model, | 19 load_model, | 
| 24 read_columns, | 20 read_columns, | 
| 21 SafeEval, | |
| 25 try_get_attr, | 22 try_get_attr, | 
| 26 get_module, | |
| 27 clean_params, | |
| 28 get_main_estimator, | |
| 29 ) | 23 ) | 
| 24 from scipy.io import mmread | |
| 25 from sklearn.metrics.scorer import _check_multimetric_scoring | |
| 26 from sklearn.model_selection import _search, _validation | |
| 27 from sklearn.model_selection._validation import _score | |
| 28 from sklearn.pipeline import Pipeline | |
| 29 from sklearn.utils import indexable, safe_indexing | |
| 30 | 30 | 
| 31 | 31 | 
| 32 _fit_and_score = try_get_attr("galaxy_ml.model_validations", "_fit_and_score") | 32 _fit_and_score = try_get_attr("galaxy_ml.model_validations", "_fit_and_score") | 
| 33 setattr(_search, "_fit_and_score", _fit_and_score) | 33 setattr(_search, "_fit_and_score", _fit_and_score) | 
| 34 setattr(_validation, "_fit_and_score", _fit_and_score) | 34 setattr(_validation, "_fit_and_score", _fit_and_score) | 
| 102 rval = list(chain.from_iterable((safe_indexing(a, train), safe_indexing(a, test)) for a in new_arrays)) | 102 rval = list(chain.from_iterable((safe_indexing(a, train), safe_indexing(a, test)) for a in new_arrays)) | 
| 103 else: | 103 else: | 
| 104 rval = train_test_split(*new_arrays, **kwargs) | 104 rval = train_test_split(*new_arrays, **kwargs) | 
| 105 | 105 | 
| 106 for pos in nones: | 106 for pos in nones: | 
| 107 rval[pos * 2 : 2] = [None, None] | 107 rval[pos * 2: 2] = [None, None] | 
| 108 | 108 | 
| 109 return rval | 109 return rval | 
| 110 | 110 | 
| 111 | 111 | 
| 112 def _evaluate(y_true, pred_probas, scorer, is_multimetric=True): | 112 def _evaluate(y_true, pred_probas, scorer, is_multimetric=True): | 
