Mercurial > repos > bgruening > sklearn_stacking_ensemble_models
comparison keras_train_and_eval.py @ 10:2d890789ac48 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit 208a8d348e7c7a182cfbe1b6f17868146428a7e2"
| author | bgruening |
|---|---|
| date | Tue, 13 Apr 2021 21:46:25 +0000 |
| parents | b8c92e94ac1d |
| children | 0380f10c4e04 |
comparison
equal
deleted
inserted
replaced
| 9:b8c92e94ac1d | 10:2d890789ac48 |
|---|---|
| 1 import argparse | 1 import argparse |
| 2 import joblib | |
| 3 import json | 2 import json |
| 4 import numpy as np | |
| 5 import os | 3 import os |
| 6 import pandas as pd | |
| 7 import pickle | 4 import pickle |
| 8 import warnings | 5 import warnings |
| 9 from itertools import chain | 6 from itertools import chain |
| 10 from scipy.io import mmread | 7 |
| 11 from sklearn.pipeline import Pipeline | 8 import joblib |
| 12 from sklearn.metrics.scorer import _check_multimetric_scoring | 9 import numpy as np |
| 13 from sklearn.model_selection._validation import _score | 10 import pandas as pd |
| 14 from sklearn.model_selection import _search, _validation | |
| 15 from sklearn.utils import indexable, safe_indexing | |
| 16 | |
| 17 from galaxy_ml.externals.selene_sdk.utils import compute_score | 11 from galaxy_ml.externals.selene_sdk.utils import compute_score |
| 12 from galaxy_ml.keras_galaxy_models import _predict_generator | |
| 18 from galaxy_ml.model_validations import train_test_split | 13 from galaxy_ml.model_validations import train_test_split |
| 19 from galaxy_ml.keras_galaxy_models import _predict_generator | |
| 20 from galaxy_ml.utils import ( | 14 from galaxy_ml.utils import ( |
| 21 SafeEval, | 15 clean_params, |
| 16 get_main_estimator, | |
| 17 get_module, | |
| 22 get_scoring, | 18 get_scoring, |
| 23 load_model, | 19 load_model, |
| 24 read_columns, | 20 read_columns, |
| 21 SafeEval, | |
| 25 try_get_attr, | 22 try_get_attr, |
| 26 get_module, | |
| 27 clean_params, | |
| 28 get_main_estimator, | |
| 29 ) | 23 ) |
| 24 from scipy.io import mmread | |
| 25 from sklearn.metrics.scorer import _check_multimetric_scoring | |
| 26 from sklearn.model_selection import _search, _validation | |
| 27 from sklearn.model_selection._validation import _score | |
| 28 from sklearn.pipeline import Pipeline | |
| 29 from sklearn.utils import indexable, safe_indexing | |
| 30 | 30 |
| 31 | 31 |
| 32 _fit_and_score = try_get_attr("galaxy_ml.model_validations", "_fit_and_score") | 32 _fit_and_score = try_get_attr("galaxy_ml.model_validations", "_fit_and_score") |
| 33 setattr(_search, "_fit_and_score", _fit_and_score) | 33 setattr(_search, "_fit_and_score", _fit_and_score) |
| 34 setattr(_validation, "_fit_and_score", _fit_and_score) | 34 setattr(_validation, "_fit_and_score", _fit_and_score) |
| 102 rval = list(chain.from_iterable((safe_indexing(a, train), safe_indexing(a, test)) for a in new_arrays)) | 102 rval = list(chain.from_iterable((safe_indexing(a, train), safe_indexing(a, test)) for a in new_arrays)) |
| 103 else: | 103 else: |
| 104 rval = train_test_split(*new_arrays, **kwargs) | 104 rval = train_test_split(*new_arrays, **kwargs) |
| 105 | 105 |
| 106 for pos in nones: | 106 for pos in nones: |
| 107 rval[pos * 2 : 2] = [None, None] | 107 rval[pos * 2: 2] = [None, None] |
| 108 | 108 |
| 109 return rval | 109 return rval |
| 110 | 110 |
| 111 | 111 |
| 112 def _evaluate(y_true, pred_probas, scorer, is_multimetric=True): | 112 def _evaluate(y_true, pred_probas, scorer, is_multimetric=True): |
