Mercurial > repos > bgruening > sklearn_stacking_ensemble_models
comparison stacking_ensembles.py @ 11:0380f10c4e04 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit ea12f973df4b97a2691d9e4ce6bf6fae59d57717"
| author | bgruening | 
|---|---|
| date | Fri, 30 Apr 2021 23:23:56 +0000 | 
| parents | 2d890789ac48 | 
| children | 
   comparison
  equal
  deleted
  inserted
  replaced
| 10:2d890789ac48 | 11:0380f10c4e04 | 
|---|---|
| 6 import warnings | 6 import warnings | 
| 7 | 7 | 
| 8 import mlxtend.classifier | 8 import mlxtend.classifier | 
| 9 import mlxtend.regressor | 9 import mlxtend.regressor | 
| 10 import pandas as pd | 10 import pandas as pd | 
| 11 from galaxy_ml.utils import get_cv, get_estimator, get_search_params, load_model | 11 from galaxy_ml.utils import (get_cv, get_estimator, get_search_params, | 
| 12 | 12 load_model) | 
| 13 | 13 | 
| 14 warnings.filterwarnings("ignore") | 14 warnings.filterwarnings("ignore") | 
| 15 | 15 | 
| 16 N_JOBS = int(__import__("os").environ.get("GALAXY_SLOTS", 1)) | 16 N_JOBS = int(__import__("os").environ.get("GALAXY_SLOTS", 1)) | 
| 17 | 17 | 
| 60 if estimator_type.startswith("mlxtend"): | 60 if estimator_type.startswith("mlxtend"): | 
| 61 if meta_path: | 61 if meta_path: | 
| 62 with open(meta_path, "rb") as f: | 62 with open(meta_path, "rb") as f: | 
| 63 meta_estimator = load_model(f) | 63 meta_estimator = load_model(f) | 
| 64 else: | 64 else: | 
| 65 estimator_json = params["algo_selection"]["meta_estimator"]["estimator_selector"] | 65 estimator_json = params["algo_selection"]["meta_estimator"][ | 
| 66 "estimator_selector" | |
| 67 ] | |
| 66 meta_estimator = get_estimator(estimator_json) | 68 meta_estimator = get_estimator(estimator_json) | 
| 67 | 69 | 
| 68 options = params["algo_selection"]["options"] | 70 options = params["algo_selection"]["options"] | 
| 69 | 71 | 
| 70 cv_selector = options.pop("cv_selector", None) | 72 cv_selector = options.pop("cv_selector", None) | 
| 87 if estimator_type.startswith("sklearn"): | 89 if estimator_type.startswith("sklearn"): | 
| 88 options["n_jobs"] = N_JOBS | 90 options["n_jobs"] = N_JOBS | 
| 89 ensemble_estimator = klass(base_estimators, **options) | 91 ensemble_estimator = klass(base_estimators, **options) | 
| 90 | 92 | 
| 91 elif mod == mlxtend.classifier: | 93 elif mod == mlxtend.classifier: | 
| 92 ensemble_estimator = klass(classifiers=base_estimators, meta_classifier=meta_estimator, **options) | 94 ensemble_estimator = klass( | 
| 95 classifiers=base_estimators, meta_classifier=meta_estimator, **options | |
| 96 ) | |
| 93 | 97 | 
| 94 else: | 98 else: | 
| 95 ensemble_estimator = klass(regressors=base_estimators, meta_regressor=meta_estimator, **options) | 99 ensemble_estimator = klass( | 
| 100 regressors=base_estimators, meta_regressor=meta_estimator, **options | |
| 101 ) | |
| 96 | 102 | 
| 97 print(ensemble_estimator) | 103 print(ensemble_estimator) | 
| 98 for base_est in base_estimators: | 104 for base_est in base_estimators: | 
| 99 print(base_est) | 105 print(base_est) | 
| 100 | 106 | 
