Mercurial > repos > bgruening > sklearn_stacking_ensemble_models
comparison simple_model_fit.py @ 11:0380f10c4e04 draft
"planemo upload for repository https://github.com/bgruening/galaxytools/tree/master/tools/sklearn commit ea12f973df4b97a2691d9e4ce6bf6fae59d57717"
| author | bgruening | 
|---|---|
| date | Fri, 30 Apr 2021 23:23:56 +0000 | 
| parents | 2d890789ac48 | 
| children | 
   comparison
  equal
  deleted
  inserted
  replaced
| 10:2d890789ac48 | 11:0380f10c4e04 | 
|---|---|
| 4 | 4 | 
| 5 import pandas as pd | 5 import pandas as pd | 
| 6 from galaxy_ml.utils import load_model, read_columns | 6 from galaxy_ml.utils import load_model, read_columns | 
| 7 from scipy.io import mmread | 7 from scipy.io import mmread | 
| 8 from sklearn.pipeline import Pipeline | 8 from sklearn.pipeline import Pipeline | 
| 9 | |
| 10 | 9 | 
| 11 N_JOBS = int(__import__("os").environ.get("GALAXY_SLOTS", 1)) | 10 N_JOBS = int(__import__("os").environ.get("GALAXY_SLOTS", 1)) | 
| 12 | 11 | 
| 13 | 12 | 
| 14 # TODO import from galaxy_ml.utils in future versions | 13 # TODO import from galaxy_ml.utils in future versions | 
| 34 for name, p in estimator_params.items(): | 33 for name, p in estimator_params.items(): | 
| 35 # all potential unauthorized file write | 34 # all potential unauthorized file write | 
| 36 if name == "memory" or name.endswith("__memory") or name.endswith("_path"): | 35 if name == "memory" or name.endswith("__memory") or name.endswith("_path"): | 
| 37 new_p = {name: None} | 36 new_p = {name: None} | 
| 38 estimator.set_params(**new_p) | 37 estimator.set_params(**new_p) | 
| 39 elif n_jobs is not None and (name == 'n_jobs' or name.endswith('__n_jobs')): | 38 elif n_jobs is not None and (name == "n_jobs" or name.endswith("__n_jobs")): | 
| 40 new_p = {name: n_jobs} | 39 new_p = {name: n_jobs} | 
| 41 estimator.set_params(**new_p) | 40 estimator.set_params(**new_p) | 
| 42 elif name.endswith("callbacks"): | 41 elif name.endswith("callbacks"): | 
| 43 for cb in p: | 42 for cb in p: | 
| 44 cb_type = cb["callback_selection"]["callback_type"] | 43 cb_type = cb["callback_selection"]["callback_type"] | 
| 66 | 65 | 
| 67 input_type = params["input_options"]["selected_input"] | 66 input_type = params["input_options"]["selected_input"] | 
| 68 # tabular input | 67 # tabular input | 
| 69 if input_type == "tabular": | 68 if input_type == "tabular": | 
| 70 header = "infer" if params["input_options"]["header1"] else None | 69 header = "infer" if params["input_options"]["header1"] else None | 
| 71 column_option = params["input_options"]["column_selector_options_1"]["selected_column_selector_option"] | 70 column_option = params["input_options"]["column_selector_options_1"][ | 
| 71 "selected_column_selector_option" | |
| 72 ] | |
| 72 if column_option in [ | 73 if column_option in [ | 
| 73 "by_index_number", | 74 "by_index_number", | 
| 74 "all_but_by_index_number", | 75 "all_but_by_index_number", | 
| 75 "by_header_name", | 76 "by_header_name", | 
| 76 "all_but_by_header_name", | 77 "all_but_by_header_name", | 
| 88 elif input_type == "sparse": | 89 elif input_type == "sparse": | 
| 89 X = mmread(open(infile1, "r")) | 90 X = mmread(open(infile1, "r")) | 
| 90 | 91 | 
| 91 # Get target y | 92 # Get target y | 
| 92 header = "infer" if params["input_options"]["header2"] else None | 93 header = "infer" if params["input_options"]["header2"] else None | 
| 93 column_option = params["input_options"]["column_selector_options_2"]["selected_column_selector_option2"] | 94 column_option = params["input_options"]["column_selector_options_2"][ | 
| 95 "selected_column_selector_option2" | |
| 96 ] | |
| 94 if column_option in [ | 97 if column_option in [ | 
| 95 "by_index_number", | 98 "by_index_number", | 
| 96 "all_but_by_index_number", | 99 "all_but_by_index_number", | 
| 97 "by_header_name", | 100 "by_header_name", | 
| 98 "all_but_by_header_name", | 101 "all_but_by_header_name", | 
| 106 infile2 = loaded_df[df_key] | 109 infile2 = loaded_df[df_key] | 
| 107 else: | 110 else: | 
| 108 infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) | 111 infile2 = pd.read_csv(infile2, sep="\t", header=header, parse_dates=True) | 
| 109 loaded_df[df_key] = infile2 | 112 loaded_df[df_key] = infile2 | 
| 110 | 113 | 
| 111 y = read_columns(infile2, | 114 y = read_columns( | 
| 112 c=c, | 115 infile2, c=c, c_option=column_option, sep="\t", header=header, parse_dates=True | 
| 113 c_option=column_option, | 116 ) | 
| 114 sep='\t', | |
| 115 header=header, | |
| 116 parse_dates=True) | |
| 117 if len(y.shape) == 2 and y.shape[1] == 1: | 117 if len(y.shape) == 2 and y.shape[1] == 1: | 
| 118 y = y.ravel() | 118 y = y.ravel() | 
| 119 | 119 | 
| 120 return X, y | 120 return X, y | 
| 121 | 121 | 
